budownictwo ogolne sciaga duzy format sciagi.doc

(796 KB) Pobierz
1

1. BUDOWNICTWO OGÓLNE, ZAKRES TEMATYCZNY, MIEJSCE W DZIALE TECHNIKI NAZYWANYM BUDOWNICTWO.

Budownictwo – dział techniki traktujący o zasadach proj. Wykonywania i konserwacji budowli.

Podział budownictwa : lądowe (ogólne) i wodne. Ze względu na położenie budowli do poziomu gruntu : b. nadziemne, naziemne, podziemne. Ze względu na przeznaczenie obiektów : b. mieszkaniowe, użyt. publ., przemysł., komunikac., sanit., energet., rolnicze, wojskowe. Ze względu na użyte materiały : drewniane, kamienne, ceglane, betonowe, metalowe.

Każda budowla powinna spełniać 3 podst. warunki : odpowiadać przeznaczeniu, wykonana zgodnie z normami, estetyczne.

Budownictwo ogólne – dział zainteresowany b. mieszkaniowym i użytecz. publ., dziedzina wiedzy inżynierskiej, która zajmuje się zaspokajaniem podstawowej potrzeby człowieka – potrzeby mieszkania.

2. FAZY WZNOSZENIA BUDYNKU , ICH CHARAKTERYSTYKA.

* stan zerowy – roboty ziemne, izolacyjne, wykonanie fundamentów, ścian piwnic i stropów nad nimi. ; * Stan surowy – wykonanie ścian, stropów, konstrukcji dachu wraz z pokryciem oraz klatek schodowych,; *roboty wykończeniowe – tynkowanie, roboty okładzinowe, posadzki, szklenie, zduńskie, malarskie, dekarskie itp.

3. OBCIĄŻENIA STAŁE, ZMIENNE. ZASADY USTALANIA OBC. OBLICZENIOWYCH

Obciążenie-wielkie działanie fizyczne, które zmienia stan systemu konstrukcyjnego (powstanie naprężeń, odkształceń, zarysowań). * stałe – (wartość, kierunek, położenie nie zmienia się w czasie eksploatacji obiektu)ciężar własny wszystkich elementów konstrukcyjnych, siła sprężania konstrukcji, *zmienne – krótkotrwałe (śnieg i wiatr), użytkowe w budynkach mieszkaniowych 1,5 kN/m^2 mogą być długotrwałe(ścianki działowe), w części długotrwałe (obciążenia stropów w magazynach) , wyjątkowe (pożar, wybuch itp.)

Wartość obciążenia: wartość charakterystyczna Gk-obc.stałe; Qk – obc.zmienne- wartość obc. O przyjętym prawdopodobieństwie nieprzekroczenia w kierunku niebezpiecznym w ciągu określonego czasu; wartość obliczeniowa Gk*gk-stałe, Qk*gk-zmienne; *wartość obciążenia wyjątkowego Fa; wartość obc.zmiennego do kombinacji obciążeń yo*Qk;  *wartość długotrwała obc.zmiennego yd*Qk

4. OBCIĄŻENIE ŚNIEGIEM I WIATREM.

*wartość obciążenia śniegiem odniesiona do 1 m^2 rzutu dachu na powierzchnię poziomą, zwana obciążeniem charakterystycznym śniegiem dachu (Sk) zależy od obciążenia charakterystycznego śniegiem gruntu w danej strefie kraju (Qk) oraz odpowiedzniego współ. kstałtu C. Sk=Qk*C; (I strefa Qk=0,7 kN/m^2; II – 0,9; III – 1,1; IV – 0,003 H (H w mnpm <1000m) >=0,9, dla H>1000mnpm ustalamy indywidualnie Qk.   W przypadku dwu lub więcej wariantów obciążeń do obliczeń przyjmuje się wariant dający najniekorzystniejsze wartości obciążeń. Dla wiat i stropodachów w budynkach nieogrzewanych i nie ocieplonych obciążenie Sk należy zwiększyć o 20%. Wartość obliczeniowa obiążenia śniegiem So=Sk*g ; g=1,4

*obciążęnie wiatrem – różnice ciśnienia na powierzchniach budowli oraz opory wywołane przepływem powietrza. Obciążenie wiatrem może być : dodatnie (parcie wiatru) – ciśnienie powietrza skierowane na powierzchnię budowli;  ujemne (ssanie) – ciśnienie powietrza działa w kierunku od powierzchni obciążenia budowli, ustala się przy założeniu, że wiatr wieje poziomo w kierunku dającym najbardziej niekorzystne parcie na budowlę, element lub przegrodę, oraz że wszystkie powierzchnie nawietrzne i zawietrzne budowli są prostopadle skierowane do nich;  qk. Wartość obciążenia wiatrem zależy od prędkości i porywów wiatru oraz od ekspozycji i właściwości aeroelastycznych budowli. Obciążenie wiatrem przypadające na 1 m powierzchni (charakterystyczne) pk=qk*Ce*C*r.

5. OBCIĄŻENIA SKŁADANE Z KILKU OBCIĄŻEŃ ZMIENNYCH.

* Kombinacja podstawowa - ågi*Gki + åYoi*goi*Qik , gdzie Gki – obc.stałe Qik – obc.zmienne , Yoi – współczynnik zmniejszający. ; * Kombinacja wyjątkowa ågi*Gki+0,8*ågfi*Qki+Fo, Fo-obc.wyjątkowe

6.UKŁADY KONSTRUKCYJNE BUDYNKÓW I ICH SZTYWNOŚĆ PRZESTRZENNA.

Ścianowe - podłużne, poprzeczne, mieszane, krzyżowe.; Szkieletowe (elementami nośnymi są słupy) – ramowe z rygli H, słupowo-ryglowe ; Szkieletowo-ścianowe – usztywnione za pomocą stężeń kratowych i ścian usztywniających, ; Trzonowe ; Powłokowe.

7.TYPY BUDYNKÓW TRZONOWYCH.

Ze stropami wspornikowymi – najpierw trzon później montaż stropów ; Trzonoliniowe – wspornik pełni rolę liny ; Trzonowo-szkieletowe – trzon obudowany szkieletem (Poltegor)

8.OKREŚLENIE TEMPERATUR NA WEWNĄTRZNYCH POWIERZCHNIACH PRZEGRÓD.

Temperatura na powierzchni przegrody od wewnątrz ui=ti-(ti-te)*R1/Rc gdzie ui-temp. na powierzchni od wewnątrz, ti-temp. powietrza po cieplejszej stronie przegrody, te-temp. po chłodnej stronie, Rc-opór przenikania ciepła Rc=Ri+Rl+Re, Ri-opór przejmowania ciepła po cieplejszej stronie przegrody, Re-opór przejmowania ciepła po chłodniejszej stronie, Rl=d/l-opór cieplny warstwy materiału.

9.GRAFICZNA METODA OKREŚLANIA TEMPERATURY W PRZEGRODZIE

10.STATECZNOŚĆ CIEPLNA, SENS FIZYCZNY, OBLICZANIE.

a)przegrody;  stateczność cieplna przegrody jest to zdolność przegrody do tłumienia wahań przepływającego przez nią strumienia ciepła. Wpływ na stateczność : wahania temp. wewnątrz pomieszczenia spowodowane nierównomiernością działania urządzeń grzewczych, wahania temperatury powietrza na zewnątrz (głównie zimą), wahania intensywności nasłonecznienia (głównie latem). Sens fizyczny – stosunek amplitudy wahań gęstości strumienia ciepła Aq przepływającego przez przegrodę budowlaną do amplitudy wahań temperatury Av na powierzchni przegrody od strony pomieszczenia. Obliczenia : U=Aq/Av [W/m^2*K]gdzie U-zdolność przyswajania ciepła przegrody,

b)pomieszczenia; stateczność cieplna pomieszczenia – zdolność pomieszczenia do przeciwdziałania wahaniom temperatury powietrza w pomieszczeniu pod wpływem wahań strumienia ciepła. Wpływ : cechy przegród zewnętrznych i wewnętrznych, urządzenia grzewcze, wyposażenie pomieszczenia, ciepło bytowe-intensywność zaludnienia. Sens – wielkość amplitudy wahań temperatury powietrza wewnątrz pomieszczenia, która zależy od nierównomierności dopływu ciepła do pomieszczenia. Obliczenia :  At=(0,7m*Q)/(suma B*A) gdzie m-współczynnik niejednorodności oddawania ciepła, Q-średnia wartość strumienia ciepła dostarczonego do pomieszczenia przez urządzenie grzewcze, B- współczynnik pochłaniania ciepła przez powierzchnie przegrody otaczającej pomieszczenie, A-powierzchnia przegród otaczających

11. Współczynnik przenikania ciepła przegrody jedno i wielowarstwowej k=1/Rc Rc=Ri+R+Re    gdzie:  k- współczynnik przenikania ciepła ;Rc – opór przenikania ciepła przegrody Ri – opór przejmowania ciepła wewnątrz przegrody; R – opór cieplny przegrody; Re – opór przejmowania ciepła na zewnątrz przegrody

12.  średni współczynnik przenikania ciepła przegrody niejednorodnej k=(k1A1+...knAn)/A;gdzie k1, ... , kn – współczynniki przenikania ciepła poszczególnych części przegrody k=(k1A1+...knAn)/A;gdzie k1, ... , kn – współczynniki przenikania ciepła poszczególnych części przegrody

13.Współczynnik przenikania ciepła dla podłóg, okien, świetlików i drzwi balkonowych Podłoga na gruncie w ogrzewanym pomieszczeniu  powinna mieć: kgmax=0.6w/m2K przy ti > 16C; kgmax=0.9w/m2K przy  4C < ti < 18C; Wartości k dla zewn. okien, świetlików i drzwi balkonowych nie powinny być większe od wartości maksymalnych kmax w zależności od rodzaju pomieszczeń, temperatur obliczeniowych w pomieszczeniach oraz strefy klimatycznej.

14.Współczynnik przenikania ciepła dla budynku kb oblicz. wyagania kb=(n1k1A1+...+n2k2A2)/(A1+...+An); n1, n2, ... , nn – współczynniki liczb. dla poszczególnych przegród k1, k2, ... , kn – współcz. przenikania ciepła; A1, A2, ... , An – powierzchnie poszczególnych przegród zewn. ograniczające ogrzewaną kubaturę budynku z wyjątkiem pomieszczeń podziemnych; Wymagania: Ograniczenie max. wartości współcz. przenikania ciepła kb dotyczy nowych wolnostojących pojedynczych lub zespolonych bud. mieszkalnych, użyteczności publ. i produkcyjnych, jeżeli wartość średniej temp. wewn. tib budynku jest większa niż 16C . Średnia temperatura bud. jest liczona ze wzoru:tis=ti1A1+...+tinAn; t – temperatura obliczeniowa w poszczególnych ogrzewanych pomieszczeniach. A – powierzchnie przegród zewn. w m2 w ogrzewanych pomieszcz. stykające się z powietrzem zewn Powierzchnie okien świetlików i drzwi należy obliczać wg zewn. wymiarów ościeżnic , a innych przegród wg zewn. wymiarów budynku Ab/Vb=(A1+..+An)/Vb; Wartość kb obliczona z powyższego wzoru nie powinna być większa od kbmax w zależn. od AB/VB; A1, ... , An – powierzchnie w[m2] poszcz. przegród zewn.; VB – ogrzewana kubatura budynku. Wartość kbmax zależy od strefy klimatycznej i średniej temp. wewnątrz budynku             

15.Obliczanie oporu dyfuzyjnego przegrody jedno i wielowarstwowej Przegroda jednowarstwowa: rwk=dk/dk; d – grubość k-tej warstwy materiału [m]; d-współczynnik przepuszczalności pary wodnej. Przegroda wielowarstwowa: ( suma oporów dyfuzyjnych wszystkich warstw ) r=rw1+...+rwn

16.Obliczanie ciśnień pary wodnej wewnątrz przegrody pi=fi*psi/100; f – wilgotność względna powietrza w pomieszczeniu[%];p – ciśnienie pary nasyconej odpowiadającej temperaturze powietrz w pomieszczeniu

17.Przenikanie i kondensacja pary wodnej w przegrodzie Skraplanie wilgoci zachodzi wówczas, gdy powietrze stykające się z chłodnymi powierzchniami przegród ochładza się poniżej temperatury punktu rosy. Jeżeli temp. punktu rosy okaże się wyższa od obliczeniowej temp. na powierzchni przegrody od strony pomieszczenia, to wystąpi kondensacja pary wodnej ( roszenie ) na tej powierzchni. Dyfuzja pary wodnej zachodzi zawsze w kierunku od środowiska o wyższej temp. do środowiska chłodniejszego. Para wodna dyfundująca przez przegrody budowlane w okresie zimowym napotyka coraz chłodniejsze warstwy materiału. Jeżeli temp. powietrza zawartego w porach spadnie poniżej punktu rosy, para wodna zawarta w powietrzu ulegnie skropleniu zwiększając wilgotność materiału

18.Wymagania w zakresie dopuszczalnego zawilgocenia ścian w wyniku dyfuzji i kondensacji pary wodnej Kondensacja pary wodnej jest dopuszczalna, ale nagromadzenie kondensatu nie powinno spowodować większego przyrostu wilgotności materiałów przegrody niż wartości dopuszczalne

19.Zasady projektowania przegród zewnętrznych Rozwiązanie konstrukcyjne tych przegród powinny zabezpieczać przed zawilgoceniem powodowanym przez kondensację pary wodnej w ich wewn. warstwach. Jeżeli przegroda wykaże większy przyrost wilgotności niż wartości dopuszczalne to należy zmienić jej konstrukcję lub zastosować paroizolację. Ze względu na izolacyjność akustyczną: Ściany zewn. i okna w budynkach mieszkalnych powinny charakteryzować się minimalnymi wskaźnikami oceny izolacyjności akustycznej. Kiedy ściana zewn. budynku jest ekranowana od źródła hałasu lub zastosowano inne zabezpieczenie akustyczno-urbanistyczne wówczas przewidywane poziomy hałasu komunikacyjnego należy skorygować o wartość wynikającą z zastosowanych rozwiązań urbaistycznych

20.Scharakteryzować czynniki wpływające na głębokość posadowienia budynku - Głębokość występowania gruntów nośnych, na których budowla może być bezpiecznie posadowiona -Głębokość przemarzania. Minimalne głębokości posadowienia fundamentów  ze względu na przemarzanie gruntów od poziomu terenu do spadu fundamentu wynoszą 0.8-1.4m (w zależności od strefy ). -Głębokość rozmycia gruntu, np. przy fundamentach podpór mostowych -Poziom zwierciadła wody gruntowej -Wymagania eksploatacyjne stawianych budowli -Poziom posadowienia sąsiednich fundamentów -Głębokość występowania gruntów pęczniejących, zapadowych, wysadzinowych itp.

21.Czynniki decydujące o dylatowaniu fundamentów.

Dylatację fundamentów należy przewidywać ,gdy można spodziewać się rozmaitych osiadań pod różnymi częściami budowli. Czynnikami decydującymi o dylatowaniu budowli są warunki gruntowe:

-  posadowienie budowli na gruntach o różnych właściwościach mechanicznych ,oparcie fundamentu częściowo na gruncie spoistym ,a częściowo na gruncie niespoistym .(a)

-  przy duzej różnicy nacisków jednostkowych pod różnymi częściami budowli ,np. gdy budynek składa się z części wyższej i niższej .(b)

-  przy zastosowaniu pod częściami budowli różnych rodzajów fundamentów ,np. częściowo opartych bezpośrednio na gruncie ,a częściowo na palach .(c)

-  przy dobudowywaniu nowego budynku do już istniejącego szczelina dylatacyjna powinna być wykonana na całej wysokości budynku .(d)

 



                        (a)                                                       (b)                             (c)

 



























        glina                                  piasek

                                                                                                pale                     

                                                                                                                        

22.Wytyczanie fundamentów budynku.

Przed przystąpieniem do robót należy : wytyczyć na planie zarys poszcz. elementów budynku . Linię zabudowy w przyziemiu wytyczają władze budowlane. Na wyrównanym terenie umieszcza się naroża ściany frontowej poprzez wbicie w ziemie palików i nabicie na nie gwoździ . przeprowadza się dwukrotny pomiar odległości w dwóch kierunkach taśmą stalową ,wytycza się z naroży kierunki prostopadłe [teodolitem lub wegielnicą] ustawiając tyczki miernicze ,następnie na wytyczonych kierunkach odmierza się odpowiednie odległosci utrwalajac inne naroża . Jeżeli  rzut poziomy budynku jest prostokątny potrzebne kierunki można okreslić teodolitem . W dalszym ciągu , poza przewidywana górną granice krawędzi wykopu [przynaj. 0.5 m.] ustawia się ławy kierunkowe złożone z wbitych w ziemię słupków o odpowiednio wygiętych głowicach i przybitych do nich desek na kant . rozmieszczamy je  przy narożnikach i na prze. ścian wewnętrznych . Po ustaw. ław przenosi się na nie wytyczone uprzednio linie ścian ,zaznaczając je na ławach wbitymi w nie z wienc.. gwoździami lub trójkąt. nacięciami na deskach. Przeniesienie linii odbywa się za pomocą naciętego między przeciwległymi końcami cienkiego drutu stalowego [fi=1mm] ,który nakierunkowywuje się  przez zawieszone na nim piony murarskie opuszczone na gwoździe palików. Od tak zaznaczonych punktów odmierza się na ławach odcinki odpowiadające odległości od krawędzi dna wykopu ,szerokości odsadzek ,szer. fundamentów ,grubości ścian ,oznaczając ich końce również gwoździami lub nacięciami .

23.Wkop wąsko- i szeroko-przestrzenny.

kształt wykopu w planie odpowiada kształt. fundam. Wymiary dna przyjmuje się zawsze nieco wieksze od wym. fund. (30-50cm); wąsko-przestrzenny(wąski) - głęb. większa od szer. ;  szeroko-przestrzenny(szeroki) - głęb. mniejsza od szer.

wykop płytki - 2,5 - 3 m ;wykop głęb.- głęb. > 3m

24.Omówienie nie zabezpieczania wykopów i zabezpieczania wąskoprzestrz.

głębimy wykopy o ścianach pionowych gdy : 1)brak jest miejsca  ,2)wykop zagraża istniejącemu już fundam. niezabezpieczony wąski wykop (z rozkopami) - ściany wyk. pochylone dla zach. stateczn. - usuniecie dużej ilości odkładu nachylenie zboczy zależy od wielu czynn. (rodzaj gruntu ,czasu utrzym. zbocza ,war. atmosfer.) wykonanie stromych zboczy może grozić wypadkiem ; dla zwiększenia statecz. przerywa się ciagłość zbocza przez wprowadzenie tzw. ław (półek) poziom. o szer. ok. 0.5m ,co 2-2.5m w kier. głęb. ; gruntu wydobyt. z dna wykopu nie należy składować przy jego krawędzi - pogorszenie stateczności ,czasami należy wywieźć go z powodu braku miejsca na skład. - takie rozwią. może okazać się kosztowniejsze od wykonania ścian pionowych  odpow. zabez. ,tzw. obudowy wykopu - nie dopuszczamy do ruchu gruntu ; zabezpieczenie wykopów wąskich :1) konstruk. rozporowa - przejmuje parcie gruntu przekazując je na ściany przeciwległę ,obudowa wykopu : bale drew. grub. 50 mm układane poziomo ,podtrzymyw. nakładkami pionowymi rozstaw. co 2-2,5m rozpartymi rozporami z okrąglaków (fi 14-20 cm) ; można użyć ,zamiast bali , blach stalowych profilowanych ,a rozpory drew. zastąpić metal. śrubowymi ; a) grunty niespoi. i spoi. : nawodnione bale układamy na styk bez szpar  ,b) grunt. spoi. małowilg. można układać z odstęp.= ich szer. ; 2) metoda górnicza stosujemy rzadko - wykopy w grunt.  drobnoziar. ,niespoi. suchych (nie można utrzym. ściany wykopu przed założ. bali )  zastosowanie do wykopów niewielkich a głębo. ; wykonanie : układ. na wyrów. terenie sztywną ramę z krawędziaków i wbija się wokoło niej ukośnie deski grub. 25-38cm ,dług. 1,2-1,5 ,następnie głębimy pod ich osłoną wykop tak aby ich końce pozost. 25cm poniżej dna na wykopanym dnie ustawiamy taką samą ramę i czynności powtarza , rząd desek z 1 i 2

kondygn. klinuje się miedzy sobą ; w celu zabezp. ram przed obsunięciem podwiesza się je do belek ułożonych nad wykopem po zakończeniu wykopu można wymienić wieszaki ? na stojaki - pewniejsze

 







rozkop                   odkład























 

 

 





 

 

25.Obudowy (podpieranie i kotwienie) wykopów szerokoprzestrzennych

obudowy podpierane - w wykop. szerokich konstrukcja rozpierająca wymag. dużej ilości materiału ,zagęszcz. stężeń itp. (zmniejsz. wolnej przestrz.)  , dlatego stosuje się izoopieranie deskowania zastrzałami ukośnymi  opartymi o kawałki krawędziaków przybite klamrami do nakładek ; kliny rozpierajace wbija się przy dolnych końcach zastrzałów , poszczególne elementy konst. łączy się kleszczami ciesielskimi  w celu lepszego podwiązania i zabezpieczenia od przypadkowego wybicia ; jeżeli głębokość > 3m wskazane jest przerwanie ciągłości ściany pionowej ławą (półką) szerok. 1-1.5m i wys. stopnia 2-2,5m , obydwa stopnie można podeprz. lub też dolny podeprz. a górny zakotwić

obudowy ,kotwienie -  najważniejszym sposobem kotwienia jest cięgno ; cięgno jest przymocow. do krótkiego pala i ułożone w rowku , który się zasypuje ; innym sposobem kotwienia jest wprowadzenie płyty zakopanej w odpow. odległ. poza ścianą i połączonej z nią przez cięgno ; siła w cięgnie wywołuje przez płytę opór gruntu który uniemożliwia przesuwanie się płyty ; prze niewielkich odległ. i małych oporach gruntu ,kotwie  przechodzą w ławę ciągłą do których przymocow. się cięgna ; pale kozłowe - dwa pale sztywno połączone w głowicach do których zaczepione są cięgna , pod wpływem siły w cięgnie przedni pal jest wciskany w grunt ,a tylni wyciągany , dzięki takiej konstrukcji niweluje moment zginający na który pale są wrażliwe ; kotwie gruntowe - obecnie coraz częściej stosowane wprowadzane przez wiercenie lub wbijanie w miarę głębienia wykopu koniec otworu wypełnia się pod ciśnieniem zaprawą cementową -tworzy tzw. buławę                                                  

 

          ob. podpierane                             podpierane    z  przerw. ciągł. dla gł.>3m   















 









           kotwione                   kotwione płytą                  pale kozłowe

















 

 

 



26.Charakterystyka spotykanych rodzajów fundamentów.

fundamenty można podzielić ze wzg. na : 1) sposób przekazywania obciążeń na grunt ,2) głębokość posadowienia ,   3) kształt  ,4) stop. sztyw. ,5) materiał użyty do konstr. : 5a) drewniane - pale , podwaliny ,ruszty ,5b)kamienne - bud. jednorodzinne ,5c) ceglane - cegła dobrze wypal. ,bez domieszek margla ,na zapr. cem. lub cem. - wap. klasy>10 dla środowisk agresywnych - cegła klinkierowa i specj. zaprawy ,5d) betonowe - łatwe i szybkie wykon. , dość odporne na korozje ,5e) żelbet. ,5f) stal - pale wanny wodoszcz. ; ze względu na sposób przekazywania obciążeń z bud. na podł. grunt. fund. dzielimy na : 1a) fund. bezpośrednie przekaz. obcią. na podł. grunt. wyłącznie poprzez dolną pow. zwaną jego podstawą  ,często fund. te spoczywają na warst. chudego betonu , żwiru ,piasku ,która służy do wzmocn. gruntu w poziomie posadowienia ,1b) fund. pośrednie - zwane sztucznymi? przekaz. obcią. z bud. na niżej zalegające warstwy nośne poprzez dodatkowe elem. wprowadzone lub uformowane w gruncie w postaci np. pali ,studni czy kesonów ,na górnych częś. elem. układa się potem właściwy fund. ; ze wzg. na głęb. posad. dzielimy je na : 2a) płytkie - opierają się na warstwie nośnej zalegającej na nieznacznej głęb. , dla takich fund. wykonuje się wykop otwarty , bez specj. wzmoc. , głębokość ich < od 4-5m  , 2b) głębokie - należy zabezp. głębokie wykopy i często obniż. zwier. wody , fund. głębo. mogą być bezpośrednie jeżeli  w celu ich wykonania wykonuj. wykop aż do głębo. zalegania gruntu odpow. wytrzyma. ; ze wzg. na kształt i konst. :  3a) ławy fund. - pod ścianami bud. lub szeregiem słupów , 3b) stopy na które przekazuja obciąż. słupy konstr. budyn. szkieletowych , 3c) płyty ,ruszty ,skrzynie - specjalne konstr. fund. mające na celu zwiększenie sztywności budowli , 3d) fund. masywne - oznaczaja się taką sztywnością ,że interes. nas bardziej stateczność całości niż wytrzym. ...ich części

   murow. lub bet.                           trapezowa                              żelbet. ławy pod ściany









 

















 



 





 





 









 







27.Konstruowanie fundamentów z cegły i betonu .

1) fund. (ławy) ceglane - stosuje się pod ściany budynków murowanych o 3-4 kondyg. ,posadow. powyżej wody grunt na jednorodnym podłożu grunt. do wykonania ław fund. należy używać cegły pełnej o wytrzym. Rz>=7.5MPa oraz zaprawy cem.- wap. 1:1:6 bądź cement. o wytrzym. Rz>=3MPa ; dla przyjętych odsadzek ¼ cegły ,a dla poszerzenia jednostronnym ½ , ogólne odchylenie powinno wynosić dla w/w zapraw h:a >=2 , min wys. ławy - 3 warstwy cegły na płask hmin=22cm , ze względów ekonom. hmax< 54cm  ; 2) ławy betonowe projekt. się gdy wys. ławy cegl. wypada zbyt duża lub gdy fund. może się znaleźć poniżej poziomu wody grunt. ; przekrój poprzecz. ma kształt prostokąta ze ściętymi  górnymi narożnikami 

 



 



 























 

28.Fundamenty żelbetowe pod ściany i słupy.

   ławy żelbet. stosuje się wówczas gdy niezbędna wys. ławy betonowej byłaby zbyt duża (duże zużycie bet.) ; posadow. słupów na wspólnym fund. pasmowym stosuje się na zapewnienie równomiernych osiadań ;pręty główne układa się w strefie rozciąg. dolnej cześci ławy wzdłuż jej długości ,pręty podłuż. rozdzielcze układa się co 30cm ;otulina beton. prętów nie < niż 4-5cm ;przed ...

Zgłoś jeśli naruszono regulamin