materialy_sciaga.doc

(131 KB) Pobierz
Metale i ich stopy

Metale i ich stopy

Metale charakteryzują się wiązaniem metalicznym. Układy wieloskładnikowe złożone z więcej niż jednego pierwiastka, charakteryzujące się przewagą wiązania metalicznego tworzą stopy metali.

Metale i ich stopy cechują następujące własności:

1) dobre przewodnictwo cieplne i elektryczne; 2) opór elektryczny zwiększa się z podwyższeniem temperatury;  3) połysk metaliczny, polegający na odbijaniu promieni świetlnych od wypolerowanych powierzchni;                    4) plastyczność (zdolność do trwałych odkształceń pod wpływem przyłożonych naprężeń).

Metale otrzymuje się z rud, będących najczęściej tlenkami. Procesy metalurgiczne polegają zwykle na redukcji prowadzącej do ekstrakcji metalu z rudy oraz na rafinacji, usuwającej z metalu pozostałe zanieczyszczenia. Elementy metalowe zwykle wykonywane są metodami odlewnicz., przeróbki plastycznej lub obróbki skrawaniem, a często także metalurgii proszków. Własności metali i stopów są kształtowane metodami obróbki cieplnej, a powierzchnia elementów metalowych często jest uszlachetniana metodami inżynierii powierzchni, zwiększającymi m.in. odporność na korozję lub odporność na zużycie.

Najczęściej używanymi spośród materiałów metalowych są stale, czyli stopy żelaza z węglem i innymi pierwiastk., a także stopy odlewnicze żelaza, tzn. staliwa i żeliwa.

Liczną grupę stosowanych materiałów metalowych stanowią również metale nieżelazne i ich stopy.

Polimery

Materiały organiczne, złożone ze związków węgla. Polimery są tworzone przez węgiel, wodór oraz Si, N, O, F Polimery  są makrocząsteczkowymi i powstają w wyniku połączenia wiązaniami kowalencyjnymi w łańcuchy wielu grup atomów zwanych monomerami jednego lub kilku rodzajów. Charakteryzują się: 1) małą gęstością;               2)izolacyjnymi własnościami cieplnymi i elektrycznymi;     3) słabo odbijają światło i zwykle są przezroczyste; 4) nie nadają się do pracy w podwyższonej temperaturze.

Zaletą polimerów jest łatwość formowania z nich wyrobów oraz niski koszt wytwarzania.

Ceramiki i szkła

Związki nieorganiczne (najczęściej tlenki, azotki, węgliki) o jonowych i kowalencyjnych wiązaniach międzyatomow., będące najczęściej izolatorami (bardzo słabo przewodzą prąd elektryczny) mają niską udarność i plastyczność, lecz dużą twardość i wytrzymałość na ściskanie, są odporne na działanie wysokich temperatur. Ceramiki są zazwyczaj polikrystaliczne, szkła są amorficzne.

Kompozyty

Są połączeniami dwóch lub więcej odrębnych i nierozpuszczających się w sobie faz, z których każda odpowiada innemu podstawowemu materiałowi inżynierskiemu, zapewniającymi lepszy zespół własności i cech strukturalnych, od właściwych dla każdego z materiałów składowych oddzielnie. 

 

Wiązanie jonowe (heteropolarne) – polega na elektrostatycznym przyciąganiu się jonów odmiennego znaku. Jony przyciągają się w myśl prawa Coulomba z siłą wprost proporcjonalną do ładunku (elektrowartościowości) i odwrotnie proporcjonalną do kwadratu odległości. Cechy: 1) w stałym stanie skupienia tworzą sieci krystaliczne,      w których występują jony dodatnie i ujemne; 2) w stanie stopionym i w roztworach przewodzą prąd elektryczny,      a w stanie stałym są złymi przewodnikami elektryczności;  3) na ogół mają wysokie temperatury wrzenia i topnienia.

Wiązanie atomowe (homeopolarne, kowalencyjne) – polega na istnieniu wiążących par elektronów należących jednocześnie do dwóch sąsiadujących ze sobą atomów. Zewnętrzne powłoki atomów zachodzą wzajemnie na siebie, przez co niektóre elektrony są wspólną własnością obu atomów.

Wiązanie metaliczne – gdy pierwiastek przechodzi ze stanu pary w stan ciekły lub stały, to słabo związane z jądrem atomu elektrony walencyjne przestają należeć do poszczególnych atomów i stają się elektronami swobodnymi, stanowiącymi wspólną własność wszystkich atomów. Sieci krystaliczne metali są uporządkowanym zbiorem jonów dodatnich, tzw. rdzeni atomowych metalu pogrążonych jak gdyby w gazie elektronowym, który je cementuje.

Wiązania siłami van der Waalsa – Siłami van der Waalsa nazywamy siły wzajemnego przyciągania się cząsteczek. Siły te działają między cząsteczkami substancji gazowych  i ciekłych, jak również między cząsteczkami w sieciach krystalicznych molekularnych.

 

Układy krystalograficzne i typy sieci przestrzennych

F – ściennie centrowana, C – centrowana na podstawach,   I – przestrzennie centrowana, P – prymitywna

1)         regularny (a=b=c, a=b=c=90°) – P, I, F;

2)         tetragonalny (a=b¹c, a=b=c=90°) – P, I;

3)         rombowy (a¹b¹c, a=b=c=90°) – P, I, F, C;

4)         trygonalny (romboedryczny) (a=b=c, a=b=c¹90°) – P;

5)         heksagonalny (a=b¹c, a=b=90°, c=120°) – P;

6)         jednoskośny (a¹b¹c, a=b=90°, c¹90°) – P, C;

7)         trójskośny (a¹b¹c, a¹b¹c¹90°) – P.

Metale krystalizują wyłącznie w pierwszych pięciu układach krystalograficznych. Większość metali krystalizuje w układach krystalograficznych charakteryzujących się wysoką symetrią zapełnienia sieci przestrzennej atomami, w szczególności w sieciach:

·          A1 – ściennie (płasko) centrowanej układu regularnego

·          A2 – przestrzennie centrowanej układu regularnego

·          A3 – heksagonalnej o gęstym ułożeniu atomów

Własności metali, a szczególnie podatność na odkształc. plastyczne, w dużej mierze zależą od typu sieci przestrzen.

 

 

Defekty liniowe (dyslokacje)

·          krawędziowa – stanowi krawędź ekstrapłaszczyzny, tj. półpłaszczyzny sieciowej umieszczonej między nieco rozsuniętymi płaszczyznami sieciowymi kryształu o budowie prawidłowej. Dyslokacje krawędziowe leżące w płaszczyznach najgęściej obsadzonych atomami będących płaszczyznami poślizgu, przemieszczają się pod działaniem naprężenia stycznego. Powstanie dyslokacji krawędziowej można sobie wyobrazić zakładając pewną ściśliwość kryształu, dzięki której przemieszczenie górnej części kryształu, wynoszące na brzegowej jeden odstęp międzyatomowy, w miarę oddalania się od tej płaszczyzny będzie malało, aż wreszcie zanika. Poślizg zachodzi zatem nie na całej płaszczyźnie łatwego poślizgu, ale tylko na jej części (poślizg niejednorodny). Dyslokacja krawędziowa już pod działaniem niewielkich naprężeń łatwo zmienia swoje położenie, a po wyjściu z kryształu tworzy na przeciwległej powierzchni stopień. W zależności od położenia dodatkowej półpłaszczyzny dyslokacje mogą być dodatnie (^) lub ujemne (T). Dodatnie jeśli półpłaszczyzna znajduje się nad płaszczyzną poślizgu, ujemne – odwrotnie. Wielkością charakterystyczną dla dyslokacji jest wielkość zaburzenia sieci krystalicznej jakie ona wywołuje, a dokładniej energia związana z tym zaburzeniem. Jako miarę tego zaburzenia przyjęto wektor Burgersa. Wyznacza się go za pomocą tzw. konturu Burgersa (obiegu składającego się z jednakowej liczby odstępów sieciowych w każdym kierunku). Jego długość określa wielkość zaburzenia w dyslokacji krawędziowej. Jest prostopadły do linii dyslokacji, a jego zwrot jest zgodny z kierunkiem. W czasie ruchu dyslokacje krawędziowe mogą na swojej drodze napotkać inne defekty sieciowe. Gdy krawędź półpłaszczyzny napotka atom w pozycji międzywęzłowej, wydłuża się ona o jeden odstęp sieciowy – zmieniając tym samym płaszczyznę poślizgu. Gdy napotka wakans, krawędź skróci się o jeden odstęp sieciowy. Dyslokacje mogą się przesuwać aż do przeszkody (koniec materiału, granica ziarna, granica obcofazowa). Jeśli  po tej samej płaszczyźnie poślizgu przesuwać się będzie, druga dyslokacja o tym samym znaku, to zatrzyma się ona w takiej odległości od poprzedniej, by wzrastające zaburzenie sieci krystalicznej i związane z nim naprężenie równoważyły się z naprężen. zewnętrznymi. Następna z kolei dyslokacja jednoimienna przemieszczająca się po tej samej płaszczyźnie poślizgu zatrzyma się w większej odległości od poprzedniej, gdyż jest odpychana już przez dwie dyslokacje poprzednie. Podobnie będzie z dyslokacjami następnymi, a powstałe zgrupowanie zatrzymanych dyslokacji nazywane jest spiętrzeniem dyslokacji. Obce wtrącenia, drobne wydzielenia innych faz, gęsta sieć granic ziarn w polikryształach, wszystko to utrudnia swobodę ruchu dyslokacji i zwiększa odporność materiału na odkształcen. plastyczne. Materiał staje się mniej plastyczny, twardszy i wzrasta jego wytrzymałość; całokształt zmian–umocnienie.

·          śrubowa – defekt liniowy struktury krystalicznej spowodowany przemieszczeniem części kryształu wokół osi, zwanej linią dyslokacji śrubowej. Wektor Burgersa dyslokacji śrubowej jest skierowany równolegle do jej lini. Dyslokacje śrubowe występują wtedy, gdy na materiał działają naprężenia tnące skierowane przeciwnie. Pod działaniem tych naprężeń dyslokacje śrubowe przemieszczają się. Dyslokacja krawędziowa przemieszcza się w kierunku działania naprężenia, natomiast linia dyslokacji śrubowej przemieszcza się w głąb kryształu, prostopadle do kierunku działania naprężenia stycznego. Dyslokacje śrubowe mogą być prawo- lub lewoskrętne.

·          mieszana – dyslokacja o dowolnej orientacji wektora Burgersa względem linii dyslokacji (nierównoległy i nie-prostopadły)

 

umacnianie – metoda zmian właściwości poprzez:

·          dodawanie dodatkowych pierwiastków stopowych

·          wzrost gęstości defektów (dyslokacji) w materiale –  najczęściej używana metoda (przeróbka plastyczna)

·          zmianę wielkości naprężenia tnącego

 

Defekty płaskie

·          granice ziarn – powierzchnie oddzielające dwa ziarna różniące się orientacją głównych osi krystalograficznych (w metalach), w stopach technicznych także składem chemicznym.  Granice wąskokątowe (kąt dezorientacji:   6-10°) charakteryzują się budową dyslokacyjną. Płaszczyzny atomowe w pobliżu styku kończą się w taki sposób, jak w dyslokacjach krawędziowych. Taką nachyloną granicę wąskokątową można uważać zatem za zbiór równoległych dyslokacji krawędziowych ułożonych jedna nad drugą. Odległość D między liniami sąsiednich dyslokacji zależy od kąta dezorientacji i można ją wyznaczyć uwzględniając łuk wyznaczony przez kąt skręcania q na okręgu o promieniu D. Gdy odstęp między atomami na kierunku prostopadłym do granicy, równy wektorowi Burgersa jest dużo mniejszy niż D, wówczas wektorjest bardzo bliski długości omawianego łuku. Można więc napisać , a stąd: D = b/q.                    Kąt dezorientacji może być również kątem o jaki obrócono względem siebie przyległe ziarna. Jeśli kąt ten jest niewielki, to granica taka stanowi ścianę przecinających się podobnie jak w sieci rybackiej linii dyslokacji śrubowych. Granica taka nazywana jest granicą skręconą. Granice szerokokątowe – charakteryzują się dużym kątem (>10°) dezorientacji krystalicznej ziarn, na styku których powstają. Budowa tych granic jest b. złożona i nie w pełni zbadana. Sądzi się, że na granicach ziarn powstaje strefa miejsc koincydentnych, tj. jednoczesnych, tworzących supersieć przestrzenną, nakładającą się na sieć przestrzenną sąsiadujących ze sobą ziarn. Parametr supersieci miejsc koincydentnych jest wielokrotnością parametru sieci ziarn. W strefie granicy ułożenie atomów charakterystyczne dla wnętrza ziarn jest zaburzone. Granica szerokokątowa nie jest przy tym płaska, lecz zawiera liczne dyslokacje oraz protuzje, tj. wybrzuszenia i występy. Szczególnym przypadkiem granic szerokątowych są granice bliźniacze. Tworzą się one przy ściśle określonej orientacji ziarn, gdy płaszczyzna granicy staje się płaszczyzną symetrii. Na granicy takiej zachodzi zatem pełne dopasowanie (koherencja) sieci obu ziarn. Niemal zupełny brak zaburzeń w prawidłowym rozmieszczeniu atomów sprawia, że energia takiej granicy jest małą i wynosi 3-10% energii granic szerokokątowych. Gdy granica bliźniacza odchyli się o mały kąt od płaszczyzny idealnego dopasowania, wtedy dzieli się ona na strefy, w których dopasowanie jest dobre i strefy w których dopasowanie uzyskuje się kosztem niewielkich odkształceń sprężystych (przesunięć atomów poza położenia równowagi) lub okresowo powtarzających się dyslokacji. Pociąga to za sobą zwiększenie się energii takiej granicy, a gdy kąt odchylenia wzrasta, prowadzi to do osiągnięcia takich wartości energii, jaką wykazują granice szerokokątowe.
 

Wyraźna granica plastyczności                                     Granicą plastyczności jest nazywane naprężenie niezbędne do zapoczątkowania makroskopowego odkształcenia plastycznego we wszystkich ziarnach. Dolna granica plastyczności (wyraźna granica plastyczności) zwiększa się wraz ze zmniejszeniem wielkości ziarn, zgodnie z równaniem Halla – Petcha:

 

gdzie: s0 – naprężenie uplastyczniające (siła potrzebna do rozpoczęcia ruchu dyslokacji), k – stała materiałowa,      d  średnica ziarn.

 

Granice międzyfazowe

Fazą nazywamy jednorodną część układu, oddzieloną od reszty układu powierzchnią graniczną, po przekroczeniu której własności zmieniają się w sposób nieciągły. Różnica w składzie chemicznym, typie sieci krystalicznej i wzajemnej orientacji powoduje na ogół występowanie na takiej granicy licznych zaburzeń w prawidłowym rozmieszczeniu atomów. Podobieństwo do budowy szerokokątowych granic ziarn wyjaśnia duże wartości energii tych granic międzyfazowych, nazywanych granicami niekoherentnymi.
Granice koherentne. Mimo odmiennych sieci krystalicz. może się zdarzyć, że w sieciach tych istnieją takie płaszczyzny atomowe, na których rozmieszczenie atomów jest identyczne. Jeżeli wzajemna orientacja obu tych faz będzie taka, że zetkną się one z sobą tymi płaszczyznami, to na granicy międzyfazowej brak jest jakichkolwiek nieprawidłowości w rozmieszczeniu atomów. Energia granic koherentnych jest więc mała. Całkowite sprzężenie sieci krystalicznych obu sąsiadujących ze sobą faz jest jednak możliwe tylko wtedy, gdy płaszczyzny atomowe obu faz są do siebie równoległe i tak zorientowane, aby kierunki rzędów atomowych się pokrywały. Spełnione muszą zatem być następujące warunki:

·          (hkl)a || (h1k1l1)b,

·          [uvw]a || [u1v1w1]b,

·          odstępy między atomami wzdłuż powyższych kierunków powinny być takie same.

Rzadko zdarza się jednak, by na płaszczyźnie styku dwóch faz istniała idealna zgodność odstępów między atomami. Gdy różnice te są małe, wówczas wzajemne dopasowanie może być osiągnięte przez odkształcenie sprężyste obu sieci. Wielkość tego odkształcenia zależy od tego jak duża jest niezgodność w rozmieszczeniu atomów na płaszczyźnie granicznej. Energia tego odkształcenia zależy natomiast od stałych sprężystości obu faz i powoduje wzrost energii takiej koherentnej granicy międzyfazowej.

Gdy niezgodność w rozmieszczeniu atomów na płaszczyźnie styku obu faz jest za duża, aby mogła być skompensowana samym tylko odkształceniem sprężystym, a rozmiary cząstek drugiej fazy są znaczne, wówczas na granicach międzyfazowych pojawiają się dyslokacje. Dyslokacje te tworzą sieć o oczkach tym mniejszych, im większe jest niedopasowanie. Siatka dyslokacji przyczynia się do zmniejszenia energii granicy i składa się na nią wtedy energia odkształceń sprężystych (między dyslokacjami) i energia dyslokacji. Mówimy wtedy, że granica jest półkoherentna. Dążność do zmniejszenia energii całkowitej układu, jakim jest polikryształ zbudowany z dwóch lub więcej faz przejawia się też w postaci dążności do zmniejszenia energii całkowitej wszystkich granic. Gdy obie fazy mogą utworzyć koherentną granicę międzyfazową, wówczas przyjmują one kształt płytek, gdyż całkowite sprzężenie sieci krystalicznych obu faz możliwe jest tylko na granicach płaskich. W razie niekoherentnej granicy międzyfazowej dążność do zmniejszenia energii całkowitej przejawia się występowaniem drugiej fazy  postaci kulistej.

Wydzielenia drugiej fazy na granicach ziarn przyjmują natomiast kształt zapewniający równowagę napięć powierzchniowych. Rozpatrując styk trzech ziarn z których jedno jest inną fazą z warunków równowagi otrzymamy zależność: gaa = 2gab ×cos(F/2), w której: gaa jest napięciem powierzchniowym na granicy ziarn tej samej fazy, gab – napięciem powierzchniowym na granicy międzyfazowej, a F – kątem dwuściennym krawędzi ziarna fazy b. Wartość kąta F zależy zatem od stosunku napięć powierzchniowych, gdyż cos(F/2) = gaa / 2gab.

Jeżeli granica fazowa jest niekoherentna, to przy małej wartości napięcia powierzchniowego na granicy między ziarnami tej samej fazy może być spełniona zależność gab » gaa, a wtedy cos(F/2) » 0. Wtedy kąt F » 180° i wydzielenia fazy b przyjmują kształt kulisty. W miarę jak będzie malało napięcie granicy międzyfazowej lub wzrastało napięcie granicy ziarn, kąt dwuścienny F będzie malał i zmieniać się będzie kształt wydzieleń fazy b.

W granicznym wypadku, gdy kąt ten będzie równy zeru, faza b utworzy wokół ziarn fazy a cienką błonkę. Z energetycznego punktu widzenia korzystniejsze jest bowiem zastąpienie powierzchni granic ziarn fazy a dwoma powierzchniami międzyfazowymi ab o energii powierzchniowej mniejszej niż połowa wartości energii granic ziarn.

Budowa krystaliczna wlewków

Większość technicznie ważnych metali otrzymuje się w postaci ciekłej i dlatego musi się je odlewać z formy, w celu otrzymania po skrzepnięciu albo wyrobów o pożądanym kształcie, albo bloków zwanych wlewkami, które przeznacza się do dalszej obróbki plastycznej. W formie ciekły metal zaczyna krzepnąć, przy czym jeśli była to forma metalowa (kokila lub wlewnica), a jej ścianki były zimne, to warstwa cieczy przyległa do jej ścian ulega silnemu przechłodzeniu. W takich warunkach w warstwie tej powstaje bardzo duża ilość bezładnie zorientowanych zarodków krystalizacji. W rezultacie zewnętrzna warstwa odlewu jest bardzo drobnoziarnista i nazywana jest strefą kryształów zamrożonych.

Dalsze krzepnięcie polega na wzroście tych kryształów, które stykają się z cieczą.

 

Krystalizacja

Krystalizacją nazywamy powstawanie kryształów podczas przechłodzenia substancji ze stanu termodynamicznie mniej trwałego w stan bardziej trwały. W wypadku substancji czystych kryształy mogą powstawać z przechłodzonej pary lub z cieczy, a w stanie stałym – z nietrwałych odmian alotropowych. W substancjach złożonych jakimi są stopy, nowe kryształy mogą powstawać także z przesyconych roztworów stałych. Podczas krystalizacji zachodzi zmiana wielu własności fizycznych (gęstości, ciepła właściwego, rozszerzalności cieplnej, przewodności elektrycznej itp.) i rejestracja tych zmian w zależności od temperatury pozwala określić dokładnie temperatury, w których proces ten zachodzi. W substancjach czystych zmiany te zachodzą skokowo, w stałej temperaturze, a w stopach – w zakresie  temperatur. Do rozpoczęcia krzepnięcia jest konieczne przechłodzenie niezbędne do wystąpienia różnicy energii swobodnych i im jest ono większe, tym większe jest prawdopodobieństwo rozpoczęcia się tej przemiany.

Występowanie przechłodzeń wskazuje, że krzepnięcie nie jest procesem przebiegającym niezwłocznie po pojawieniu się różnicy energii swobodnych. Można to wyjaśnić tym, że poziomy energii swobodnych obu stanów – ciekłego i stałego – są przedzielone barierą o większej energii. Wysokość bariery oddzielającej dwa stany – metastabilny i stabilny – jest czynnikiem decydującym o szybkości przemiany, gdyż zmienić stan mogą tylko atomy dysponujące odpowiednim nadmiarem energii. Liczba takich atomów w układzie metastabilnym jest natomiast tym mniejsza, im większa jest nadwyżka energii konieczna do pokonania bariery energetycznej. Istnienie podczas krzepnięcia bariery energetycznej powoduje, że przemiana ta przebiega stopniowo. Ilość energii jaką należałoby doprowadzić do układu, by wszystkie atomy jednocześnie przekroczyły barierę energetyczną, byłaby bowiem b. duża Barierę tę może przekroczyć niewiele atomów i stąd w czasie krzepnięcia tworzą się w cieczy b. drobne cząstki fazy stałej, które następnie rosną przez przyłączanie z cieczy coraz większej liczby atomów. Te drobne cząstki krystaliczne są nazywane zarodkami krystalizacji (krytycznymi). Do tego aby zaszło skrzepnięcie cieczy konieczne jest więc:

·          przechodzenie cieczy,

·          powstanie w cieczy zarodków krystalizacji,

·          rośnięcie tych zarodków i powstanie krystalitów.

 

Stopy

Stopy dzielimy na: 1) mieszaniny, 2) roztwory, 3) związki i fazy międzymetaliczne.

Gdy siły oddziaływania między atomami tego samego składnika stopu są większe niż oddziaływanie między atomami niejednakowymi, wówczas w stopie wystąpią obok siebie kryształy składników, tworząc mieszaninę.

 

 

20. Stale

Stale niestopowe to stale w których stężenie każdego z pierwiastków jest mniejsze od poniższych wartości (%):

Al – 0,1; B – 0,0008; Bi – 0,1; Cr – 0,3; Zr – 0,05;           Co – 0,1; Si – 0,5; Lantanowce – 0,05; Mn – 1,65;            Cu–0,4; Mo – 0,08; Ni – 0,3; Nb – 0,06; Pb – 0,4; Se – 0,1; Te – 0,1; Ti – 0,05; V – 0,1; W – 0,1; inne  – 0,05.

 

Ze względu na sumaryczne stężenie pierwiastków stale stopowe dzieli się na:

· ...

Zgłoś jeśli naruszono regulamin