budynas_SM_ch02.pdf
(
149 KB
)
Pobierz
budynas_SM_ch02.qxd
Chapter 2
2-1
From Table A-20
S
ut
=
470 MPa (68 kpsi) ,
S
y
=
390 MPa (57 kpsi)
Ans.
2-2
From Table A-20
S
ut
=
620 MPa (90 kpsi) ,
S
y
=
340 MPa (49
.
5 kpsi)
Ans.
2-3
Comparison of yield strengths:
S
ut
of G10 500 HR is
620
470
=
1
.
32 times larger than SAE1020 CD
Ans.
S
yt
of SAE1020 CD is
390
340
=
1
.
15 times larger than G10500 HR
Ans.
From Table A-20, the ductilities (reduction in areas) show,
SAE1020 CD is
40
35
=
1
.
14 times larger than G10500
Ans.
The stiffness values of these materials are identical
Ans.
Table A-20
Table A-5
S
ut
S
y
Ductility
Stiffness
MPa (kpsi)
MPa (kpsi)
R
%
GPa (Mpsi)
SAE1020 CD 470(68)
390 (57)
40
207(30)
UNS10500 HR 620(90)
340(495)
35
207(30)
2-4
From Table A-21
1040 Q&T
S
y
=
593 (86) MPa (kpsi) at 205
◦
C (400
◦
F)
Ans.
2-5
From Table A-21
1040 Q&T
R
=
65% at 650
◦
C (1200
◦
F)
Ans.
2-6
Using Table A-5, the specific strengths are:
UNS G10350 HR steel:
S
y
W
=
39
.
5(10
3
)
282
=
1
.
40(10
5
)in
Ans.
0
.
2024 T4 aluminum:
S
y
W
=
43(10
3
)
0
.
098
=
4
.
39(10
5
)in
Ans.
Ti-6Al-4V titanium:
S
y
W
=
140(10
3
)
0
.
16
=
8
.
75(10
5
)in
Ans.
ASTM 30 gray cast iron has no yield strength.
Ans.
Chapter 2
7
2-7
The specific moduli are:
UNS G10350 HR steel:
E
W
=
30(10
6
)
0
.
282
=
1
.
06(10
8
)in
Ans.
2024 T4 aluminum:
E
W
=
10
.
3(10
6
)
098
=
1
.
05(10
8
)in
Ans.
0
.
Ti-6Al-4V titanium:
E
W
=
16
.
5(10
6
)
0
16
=
1
.
03(10
8
)in
Ans.
.
Gray cast iron:
E
W
=
14
.
5(10
6
)
0
26
=
5
.
58(10
7
)in
Ans.
.
2-8
2
G
(1
+
ν
)
=
E
⇒
ν
=
E
2
G
2
G
From Table A-5
Steel:
ν
=
30
−
2(11
.
5)
=
0
.
304
Ans.
2(11
.
5)
Aluminum:
ν
=
10
.
4
−
2(3
.
90)
=
0
.
333
Ans.
2(3
.
90)
Beryllium copper:
ν
=
18
2(7)
2(7)
=
0
.
286
Ans.
Gray cast iron:
ν
=
14
.
5
2(6)
2(6)
−
=
0
.
208
Ans.
2-9
E
U
80
70
60
50
40
Y
S
u
85.5 kpsi Ans.
S
y
45.5 kpsi Ans.
30
E
90
0.003
30 000 kpsi Ans.
20
R
A
0
A
F
A
0
0.1987
0.1077
0.1987
(100)
45.8% Ans.
10
l
l
0
l
l
0
l
0
l
l
0
1
A
0
1
A
0
0
0.002
0.1
0.004
0.2
0.006
0.3
0.008
0.4
0.010
0.5
0.012
0.6
0.014
0.7
0.016
0.8
(Lower curve)
(Upper curve)
Strain,
−
−
8
Solutions Manual
• Instructor’s Solution Manual to Accompany Mechanical Engineering Design
2-10
To plot
σ
true
vs.
ε
, the following equations are applied to the data.
A
0
=
π
(0
.
503)
2
4
=
0
.
1987 in
2
Eq. (2-4)
ε
=
ln
l
l
0
for 0
≤
L
≤
0
.
0028 in
ε
=
ln
A
0
A
for
L
>
0
.
0028 in
P
A
The results are summarized in the table below and plotted on the next page.
The last 5 points of data are used to plot log
σ
true
=
σ
vs log
ε
The curve fit gives
m
=
0.2306
Ans.
log
σ
0
=
5
.
1852
⇒
σ
0
=
153
.
2 kpsi
For 20% cold work, Eq. (2-10) and Eq. (2-13) give,
A
=
A
0
(1
−
W
)
=
0
.
1987(1
−
0
.
2)
=
0
.
1590 in
2
ε
=
ln
A
=
ln
0
.
1590
=
0
.
2231
0
.
Eq. (2-14):
S
y
=
σ
0
ε
m
=
153
.
2(0
.
2231)
0
.
2306
=
108
.
4 kpsi
Ans.
Eq. (2-15), with
S
u
=
85
.
5 kpsi from Prob. 2-9,
S
u
=
−
W
=
85
.
5
2
=
106
.
9 kpsi
Ans.
1
1
−
0
.
P
L
A
ε
σ
true
log
ε
log
σ
true
0
0
0.198 713
0
0
1 000
0.0004
0.198 713
0.000 2
5032.388
−
3.699 01
3.701 774
2 000
0.0006
0.198 713
0.000 3
10 064.78
−
3.522 94
4.002 804
3 000
0.0010
0.198 713
0.000 5
15 097.17
−
3.301 14
4.178 895
4 000
0.0013
0.198 713
0.000 65
20 129.55
−
3.187 23
4.303 834
7 000
0.0023
0.198 713
0.001 149
35 226.72
−
2.939 55
4.546 872
8 400
0.0028
0.198 713
0.001 399
42 272.06
−
2.854 18
4.626 053
8 800
0.0036
0.198 4
0.001 575
44 354.84
−
2.802 61
4.646 941
9 200
0.0089
0.197 8
0.004 604
46 511.63
−
2.336 85
4.667 562
9 100
0.196 3
0.012 216
46 357.62
−
1.913 05
4.666 121
13 200
0.192 4
0.032 284
68 607.07
−
1.491 01
4.836 369
15 200
0.187 5
0.058 082
81 066.67
−
1.235 96
4.908 842
17 000
0.156 3
0.240 083
108 765.2
−
0.619 64
5.036 49
16 400
0.130 7
0.418 956
125 478.2
−
0.377 83
5.098 568
14 800
0.107 7
0.612 511
137 418.8
−
0.212 89
5.138 046
A
0
1987
S
u
Chapter 2
9
160000
140000
120000
100000
80000
60000
40000
20000
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
true
5.2
5.1
y
0.2306
x
5.1852
5
4.9
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
4.8
log
2-11
Tangent modulus at
σ
=
0 is
E
0
=
σ
=
5000
−
0
0
=
25(10
6
) psi
ε
0
.
2(10
−
3
)
−
At
σ
=
20 kpsi
E
20
=
(26
−
19)(10
3
)
=
14
.
0(10
6
) psi
Ans.
(1
.
5
−
1)(10
−
3
)
ε
(10
−
3
)
σ
(kpsi)
60
0
0
50
0.20
5
0.44
10
40
(
S
y
)
0.001
˙ 35 kpsi
Ans.
0.80
16
30
1.0
19
1.5
26
20
2.0
32
2.8
40
10
3.4
46
4.0
49
0
0
1
2
3
4
5
5.0
54
(10
3
)
10
Solutions Manual
• Instructor’s Solution Manual to Accompany Mechanical Engineering Design
2-12
Since
|
ε
o
|=|
ε
i
|
=
=
−
ln
h
R
+
N
R
+
ln
R
R
+
N
ln
R
+
N
R
h
R
+
N
=
+
R
+
N
R
(
R
+
N
)
2
=
R
(
R
+
h
)
From which,
N
2
R
+
2
RN
−
Rh
=
1
/
2
0
1
h
R
The roots are:
N
=
−
1
±
+
The
+
sign being significant,
R
1
1
1
/
2
h
R
N
=
+
−
Ans.
Substitute for
N
in
ε
o
=
ln
h
R
+
N
+
R
+
h
=
ln
1
h
R
1
/
2
Gives
ε
0
=
ln
R
1
1
/
2
+
Ans.
h
R
R
+
+
−
R
These constitute a useful pair of equations in cold-forming situations, allowing the surface
strains to be found so that cold-working strength enhancement can be estimated.
2-13
From Table A-22
AISI 1212
S
y
=
28
.
0 kpsi ,
σ
f
=
106 kpsi,
S
ut
=
61
.
5 kpsi
σ
0
=
110 kpsi,
m
=
0.24,
ε
f
=
0
.
85
From Eq. (2-12)
ε
u
=
m
=
0
.
24
Eq. (2-10)
A
i
=
−
W
=
1
1
2
=
1
.
25
1
1
−
0
.
Eq. (2-13)
ε
i
=
ln 1
.
25
=
0
.
2231
⇒
ε
i
<ε
u
Eq. (2-14)
S
y
=
σ
0
ε
i
=
110(0
.
2231)
0
.
24
=
76
.
7 kpsi
Ans.
Eq. (2-15)
S
u
=
−
W
=
S
u
61
.
5
2
=
76
.
9 kpsi
Ans.
1
1
−
0
.
2-14
For
H
B
=
250,
Eq. (2-17)
S
u
=
0.495 (250)
=
124 kpsi
Ans.
=
3.41 (250)
=
853 MPa
R
R
A
0
Plik z chomika:
snicker15
Inne pliki z tego folderu:
budynas_SM_ch01.pdf
(62 KB)
budynas_SM_ch02.pdf
(149 KB)
budynas_SM_ch03.pdf
(936 KB)
budynas_SM_ch04.pdf
(721 KB)
budynas_SM_ch05.pdf
(402 KB)
Inne foldery tego chomika:
Dynamics
Mechanical Vibrations
MIT LEC
MIT.Differential.Equations.Lectures
Zgłoś jeśli
naruszono regulamin