Z9Z.RTF

(9 KB) Pobierz

Ugięcia

Ugięcia wyznaczono dla charakterystycznych obciążeń (*TylkoObcDlug długotrwałych (dla zginania bez udziału siły osiowej uwzględniany jest dodatkowo wpływ obciążeń krótkotrwałych)*|*długotrwałych i krótkotrwałych*).

Współczynniki zależne od czasu działania obciążenia i warunków środowiska: nk = 0,5; nd = $nid$; k = $kapa$.

$MomentyKD$

Wykres momentów dla obciążeń krótko- i długotrwałych.

$MomentyD$

Wykres momentów dla obciążeń długotrwałych.

(*TylkoObcDlug

$Strefy$

*|*Sztywności dla krótkotrwałego działania wszystkich obciążeń:

$Strefy_kd_k$

Sztywności dla krótkotrwałego działania obciążeń długotrwałych:

$Strefy_d_k$

Sztywności dla długotrwałego działania obciążeń długotrwałych:

$Strefy_d_d$*)

$Ugiecia$

Ugięcia.

Ugięcie w punkcie o współrzędnej  x = $x$ cm, wyznaczone poprzez całkowanie funkcji krzywizny osi pręta (1/r) , wynosi:

f = (*TylkoObcDlug fd(d)*|*fk(k+d) - fk(d) + fd(d) = $fkd_k$ - $fd_k$ + $fd_d$*) = $f$ mm

f = $WSGU$ = fdop

<*Strefa Sztywność na odcinku:              xa = $xa$   xb = $xb$ cm

Moment zginający:                                                        Mmax = $Mmax$ kNm

(*SilaOsiowa Siła osiowa:                                                                      Nm = $Nm$ kN;  e = $e$ cm

*)(*TylkoObcDlug (*Zginanie Moment zginający od obc. całkowitego:              Mkd = $Mkd$ kNm

*)*)b  = $bb$ cm;                ho = h - a = $h$ - $a$ = $ho$ cm;

Fa = $Fa$ cm2              Fac = $Fac$ cm2;

d1 = $d1$;                d2 = $d2$;                Wfp = $Wfp$ cm3                Mfp = $Mfp$ kNm

(*SilaOsiowa Nf = $Nf$ kN

*)(*Zginanie aa = (0,001 + ma) / ma = (0,001 + $mi_a$) / $mi_a$ = $alfa_$

przyjęto aa = $alfa_a$

*)(*TylkoObcDlug Sztywność dla długotrwałego działania obciążeń długotrwałych:

$Sztywnosc_d_d$

(*Bkd_d Sztywność dla długotrwałego działania wszystkich obciążeń:

$Sztywnosc_kd_d$

Sztywność dla obciążeń długotrwałych z uwzględnieniem obciążeń krótkotrwałych:

              B = (Bd + Bkd) / 2 = ($Bd$+$Bkd$) / 2 = $Bsr$

*)(*Balfa_d Sztywność dla momentu aa Mfp  działającego długotrwale:

$Sztywnosc_alfa_d$

Sztywność dla obciążeń długotrwałych z uwzględnieniem obciążeń krótkotrwałych:

              B = (Bd + Ba) / 2 = ($Bd$+$Bkd$) / 2 = $Bsr$

*)*|*(*Bkd_k $Sztywnosc_kd_k$

*)(*Bd_k $Sztywnosc_d_k$

*)(*Bd_d $Sztywnosc_d_d$*)*)

*>             

<*Sztywnosc (*Zginanie M = $Z5-2$ = 0,8 Mfp                M = $Z5-3$ = aa Mfp*|*|Ma| = $Z5-23$ = Ma f*)

Przekrój pracuje w fazie $faza$.

(*Faza_Ia_II  ga = $ga$                gb = $gb$                G = $G$                L(*SilaOsiowa a*) = $L$

Ze wzorów Z5-13, Z5-10 i Z5-9 otrzymamy:

              x f(*SilaOsiowa a*) = $ksi_f$;                Fbc = $Fbc$ cm2              zf = $zf$ cm

(*SilaOsiowa               Ma = $Ma$ kNm;                Mc = $Mc$ kNm;                M’f = $M_f$ kNm

*)(*Zginanie ya = 1,3 - d f aa Mfp / M = 1,3 - $df$×$alfa_a$×$Mfp$/$|M|$ = $psi_a1$*|* ya = 1,3 - d f M’f / Mc - (1- M’f / Mc) / (6 - 4,5 M’f / Mc) = 1,3 - $df$×$|M_f|$/$|Mc|$ - (1-$|M_f|$/$|Mc|$) / (6 - 4,5×$|M_f|$/$|Mc|$) = $psi_a2$*)

przyjęto ya = $psi_a$

BII = zf h0 / [ya / (Ea Fa) + 0,9 / (n Eb Fbc)] = $zf$×$ho$ / [$psi_a$ / ($Ea$×$Fa$) + 0,9 / ($ni$×$Eb$×$Fbc$)] ×10-5 = $BII$ MNm2

*)(*Faza_Ia  BI = Eb Ip(*DzialDlug / (1+k)*) = $Eb$×$Ip$(*DzialDlug  / (1+$kapa$)*) ×10-3 = $BI$ MNm2

BI a = BI [ 1 - ( 1- BII / BI ) (M - 0,8 Mfp) / (Mfp (a a - 0,8))] = $BI$× [ 1 - ( 1- $BII$ / $BI$ ) × ($|M|$ - 0,8×$Mfp$) / ( $Mfp$×($alfa_a$ - 0,8))] = $BIa$ MNm2

*)(*Faza_I  BI = Eb Ip(*DzialDlug / (1+k)*) = $Eb$×$Ip$(*DzialDlug  / (1+$kapa$)*) ×10-3 = $BI$ MNm2*)

*>

 

Zgłoś jeśli naruszono regulamin