Gunarathne.pdf

(792 KB) Pobierz
HIGH TEMPERATURE AIR/STEAM GASIFICATION OF
STEAM EXPLODED BIOMASS
Duleeka Sandamali Gunarathne
Jan Karol Chmielewski (PhD)
Weihong Yang (PhD)
Tel: + 4687908402
Royal Institute of Technology (KTH)
School of Industrial Engineering and Management
Department of Materials and Science Engineering
Division of Energy and Furnace Technology
Stockholm, Sweden
Energy- and Furnace Technology
1
1032323597.040.png 1032323597.041.png 1032323597.042.png 1032323597.043.png 1032323597.001.png 1032323597.002.png
Presentation schedule
Introduction to biomass pretreatment
Opening possibilities
Background
Objective of present work
Methodology: The system and the fuel
Gasification performance
Insight into behaviour of tar
Conclusions
Energy- and Furnace Technology
2
1032323597.003.png 1032323597.004.png 1032323597.005.png 1032323597.006.png
Biomass pretreatment
Mechanical pretreatment
Torrefaction
HTC
Steam explosion
– heating biomass under high pressure steam
– sudden release of pressure assuring explosive decompression
– Typical conditions:
• Pressure: 1.2-1.7 MPa
• Temperature: 170-250 o C
• Time: 10sec-10min
– limited energy consumption
– low use of chemicals
Energy- and Furnace Technology
3
1032323597.007.png 1032323597.008.png 1032323597.009.png 1032323597.010.png 1032323597.011.png
Opening possibilities
Structural change
Effect
Ultimate result
Opening
possibilities
Hemicellulose &
cellulose de-
polymerization
Low thermal stability 1-5
Early thermal degradation
+
Low temperature
operations possible
Altered lignin
structure
Release of minerals
Low alkali metal content and low ash
content
High ash fusion temperature
+
High temperature
operations possible
Less reactive
-
Need longer bed
(high H/D ratio)
Release of
hemicellulose to
solution
Low hemicellulose
content
Reduced volatiles
Less hydroxyl
groups 3
Hydrophobic
+
Transportation and
storage easiness
Less amorphous
structures (High
crystallinity) 6
Heat diffusion limitations 7
-
High temperature
operation suitable
Reduced O content
Low O/C and H/C (moving close
to peat region)
+
Co-gasification
possible
High lignin
content
High C content
High heating
value
High energy
density
+
Positive in
transportation and
storage
Disintegration of
biomass
Fine particles
High pellet density
High bulk
density
+
Compact reactor
High impact and
abrasive resistance 8
Higher durability
+
Handling easiness
Energy- and Furnace Technology
4
1032323597.012.png 1032323597.013.png 1032323597.014.png 1032323597.015.png 1032323597.016.png 1032323597.017.png 1032323597.018.png 1032323597.019.png 1032323597.020.png 1032323597.021.png 1032323597.022.png 1032323597.023.png 1032323597.024.png 1032323597.025.png 1032323597.026.png 1032323597.027.png 1032323597.028.png 1032323597.029.png 1032323597.030.png 1032323597.031.png 1032323597.032.png 1032323597.033.png 1032323597.034.png 1032323597.035.png
 
Background
Mostly focus on ultimate use as
fermentation to ethanol
Several studies based on combustion of
fermentation residue
Some studies on thermochemical behaviour
Thermal application is lacking
Energy- and Furnace Technology
5
1032323597.036.png 1032323597.037.png 1032323597.038.png 1032323597.039.png
Zgłoś jeśli naruszono regulamin