

 Patterns Continued - Fowler.pdf

 (1662 KB)

 Pobierz

	
		
			
				
					
						Application Facades
					
				

			

			
				
					
						Deep in the bones of Object-Oriented programming is notion of building a set of classes that mimics the
					
				

				
					
						objects in the “real world”. That is we try to analyze the way people think about the world and let the classes
					
				

				
					
						in our programs model the way an expert in a domain thinks. Many of the books on OO analysis and design
					
				

				
					
						talk about developing this domain model. To do anything with the domain model we need to put information
					
				

				
					
						into and out of it, typically through a Graphical User Interface (GUI). There is not so much written about that
					
				

				
					
						part of object-oriented design.
					
				

			

			
				
					
						This article serves many purposes, but the first purpose is to address this issue of the relationship between a
					
				

				
					
						GUI and the underlying model. I hold to the principle that user interfaces should lie on the outside of the
					
				

				
					
						system and be invisible to the classes that model the problem. This keeps the often varying UI functionality
					
				

				
					
						away from the domain classes. The domain classes will model the domain, the UI classes handle the UI —
					
				

				
					
						simple and separate responsibilities.
					
				

			

			
				
					
						I go further than this, and divide the UI classes into two: a presentation class and an application facade class.
					
				

				
					
						The presentation class is the class that handles all the UI work. The application facade class is responsible for
					
				

				
					
						talking to the domain model and getting the information to the presentation class in exactly the form that the
					
				

				
					
						presentation class requires. In this way the presentation class needs to know nothing about what is going on in
					
				

				
					
						the model, it only handles the UI work.
					
				

			

			
				
					
						UI
					
				

				
					
						framework
					
				

			

			
				
					
						presentation
					
				

			

			
				
					
						application
					
				

				
					
						facade
					
				

			

			
				
					
						domain
					
				

			

			
				
					
						testing
					
				

			

			
				
					
						Figure 1 The general structure of packages and dependencies
					
				

			

			
				
					
						Figure 1 shows a UML [UML] class diagram of the general structure of packages and dependencies I use. The
					
				

				
					
						key points are:
					
				

				
					
						•
					
					
						
					
					
						The presentation package does not see the domain package
					
				

				
					
						•
					
					
						
					
					
						The application facade package does not see the UI framework
					
				

				
					
						•
					
					
						
					
					
						The testing package does not need to see the presentation package.
					
				

				
					
						The benefits we get from this approach are:
					
				

				
					
						•
					
					
						
					
					
						We have split the UI classes into two sections with clear responsibilities for each. This makes each class
					
				

				
					
						simpler and easier to understand and maintain.
					
				

			

			
			
			
			
			
			
		

		
			
				
					
						•
					
					
						
					
					
						We can choose to separate the tasks of coding the presentation and application facade classes. Those who
					
				

				
					
						code the application facade need to understand the domain package but need know nothing about coding
					
				

				
					
						UI classes, the presentation programmers need to know about the UI but not about the details of the
					
				

				
					
						domain. If the domain classes and the UI framework are complex, as they often are, this makes it much
					
				

				
					
						easier for programmers to be found and trained.
					
				

				
					
						•
					
					
						
					
					
						We can test most of the system without using the UI. Testing through the UI is generally awkward and it
					
				

				
					
						is difficult to set up and maintain the testing scripts. By testing through the application facade only we
					
				

				
					
						make it much easier to set up an automatic testing system which is essential to any well managed project.
					
				

				
					
						There is still some testing of the UI that is needed, but the task is greatly reduced as in that testing we are
					
				

				
					
						only concerned with the way the UI works, not how it interacts with the domain classes.
					
				

				
					
						This article will explore how to do this in practice, with examples in Java. I discussed the principles of this in
					
				

				
					
						chapter 12 and 13 of [Fowler], but did not provide any code examples. This article will should help dispel that
					
				

				
					
						problem. For the domain model I chose to take some of the ideas of observation and measurement from
					
				

				
					
						chapters 3 and 4 of [Fowler]. So this article also illustrates some examples of implementing those patterns.
					
				

			

			
				
					
						This article also uses much the same material as that in the Java example in UML Distilled.
					
				

			

			
				
					
						An Example Problem
					
				

			

			
				
					
						Consider how a hospital’s computer systems might get at various observations they have made about a patient.
					
				

				
					
						You could have a patient class with attributes for all the different types of observations (height, blood type,
					
				

				
					
						heart rate, etc) but there would be thousands of such attributes: too many to have as attributes of a patient
					
				

				
					
						class. So we can get around this by using the Observation and Measurement patterns from [Fowler]. For the
					
				

				
					
						purposes of our discussion we want to be able record quantitative (height, 6 feet) and qualitative (blood group
					
				

				
					
						A) statements about the patient. We also want to be able to assign qualitative statements depending on a
					
				

				
					
						measurement. Thus is we record a person is breathing at a rate of 23 breaths a minute we should be able to
					
				

				
					
						automatically make the qualitative statement that that is a fast breathing rate.
					
				

			

		

		
			
				
					
						Phenomenon Type
					
				

			

			
				
					
						Phenomenon
					
				

				
					
						range : Range
					
				

			

			
				
					
						0..1
					
				

			

			
				
					
						*
					
				

			

			
				
					
						1
					
				

			

			
				
					
						1
					
				

			

			
				
					
						*
					
				

			

			
				
					
						*
					
				

				
					
						Category Observation
					
				

				
					
						isPresent : Boolean
					
				

			

			
				
					
						*
					
				

			

			
				
					
						<<abstract>>
					
				

			

			
				
					
						Measurement
					
				

				
					
						amount : Quantity
					
				

			

			
				
					
						Observation
					
				

			

			
				
					
						measurement
					
				

				
					
						<<incomplete>>
					
				

			

			
				
					
						*
					
				

			

			
				
					
						category
					
				

				
					
						<<incomplete, dynamic>>
					
				

			

			
				
					
						1
					
				

			

			
				
					
						Patient
					
				

			

			
				
					
						Quantity
					
				

				
					
						amount : Number
					
				

				
					
						unit : Unit
					
				

			

			
				
					
						Unit
					
				

			

			
				
					
						Range
					
				

				
					
						upper : Magnitude
					
				

				
					
						lower : Magnitude
					
				

			

			
				
					
						Figure 2 Conceptual UML diagram for the domain of this example
					
				

			

			
				
					
						Figure 2 shows a conceptual model to support this kind of behavior. Before we dive into it I need to stress
					
				

				
					
						that word
						conceptual
						. This model is not what the classes look like, rather it is an attempt to model the concepts
					
				

				
					
						inside a doctor’s head. It is similar to the classes, but as we shall see we have to change them a bit in the
					
				

				
					
						implementation. I have used several patterns here from [Fowler], specifically
						Quantity
						,
						Measurement, Observation,
					
				

				
					
						Range
						, and
						Phenomenon with Range
						. I’ll discuss how the model works here, but I won’t discuss the justification
					
				

				
					
						for why I’m doing that way, that I will leave to the book.
					
				

			

			
				
					
						Say we want to record that Martin is breathing at 23 breaths per minute. We would do this by creating a
					
				

				
					
						measurement object linked to the patient object that represents Martin. The phenomenon type of this
					
				

				
					
						measurement object would be called “breathing rate”. The amount in a measurement would be handled by a
					
				

				
					
						quantity object with amount of 23 and unit of “breaths per minute”.
					
				

			

			
				
					
						To say that Martin’s breathing is fast we would create a category observation, again with Martin as the patient.
					
				

				
					
						The category observation would be linked to a phenomenon of “fast breathing rate” which in turn would be
					
				

				
					
						linked to the phenomenon type of “breathing rate”. If the “fast breathing rate” phenomenon has a range, we
					
				

				
					
						should be able to automatically tell if it applies to a breathing rate of 23.
					
				

			

			
				
					
						The way the Figure 2 works a single observation object can be both a measurement and a category
					
				

				
					
						observation at the same time (since the generalization arrows carry different labels). Also a measurement can
					
				

				
					
						begin life as a plain measurement and become a category observation as well later (indicated by the
					
				

				
					
						{dynamic} constraint). The combination of the {abstract} constraint on observation and the {incomplete}
					
				

				
					
						constraints on its subtypes implies that an observation can be either a measurement, or a category observation,
					
				

				
					
						or both; but it may not be neither. This is a conceptual picture that we will not be able to directly implement
					
				

				
					
						as Java does not allow us quite this flexibility in typing.
					
				

			

			
				
					
						A model along the lines of this is very suitable for a hospital example because it will scale to the thousands of
					
				

				
					
						phenomena that are observed in a hospital setting. For an individual use, however, it is not so suitable. An
					
				

			

			
				
					
						0..1
					
				

			

			
				
					
						*
					
				

			

			
				
					
						1
					
				

			

			
				
					
						1
					
				

			

			
				
					
						*
					
				

			

			
				
					
						*
					
				

			

			
				
					
						1
					
				

			

			
			
			
			
		

		
			
				
					
						individual use may want a simpler screen entirely, along the lines of that in Figure 3. Here the user does not
					
				

				
					
						want to bother with knowing about observation objects, they just want to assign a value to some patient
					
				

				
					
						attribute.
					
				

			

			
				
					
						Figure 3 A sample screen showing a simpler view of patient information
					
				

			

			
				
					
						Our task is to implement the model in Figure 2 yet provide a UI of the form of Figure 3. We will do this by
					
				

				
					
						creating an application facade that converts from Figure 2 to a form ready for Figure 3 and a presentation
					
				

				
					
						object that gives the display in Figure 3. I’m not making any claims about the practical usefulness of a screen
					
				

				
					
						like Figure 3, the screen is purely a sample to discuss the software principles.
					
				

			

			
				
					
						Implementing Quantity
					
				

			

			
				
					
						Faced with this kind of situation many people would represent a heart rate with a number. I prefer to always
					
				

				
					
						include units with this kind of dimensioned value, hence my use of the
						Quantity
						 pattern. Implementing the
					
				

				
					
						Quantity pattern is fairly straightforward in any object-oriented language.
					
				

				
					
						public class Quantity {
					
				

				
					
						private double _amount;
					
				

				
					
						private Unit _unit;
					
				

				
					
						Although we use a double for the internal amount we can provide constructors for different initialization
					
				

				
					
						options. (Note that by convention I use a leading underscore on all fields.)
					
				

				
					
						public Quantity (double amount, Unit unit) {
					
				

				
					
						requireNonNull(unit);
					
				

				
					
						_amount = amount;
					
				

				
					
						_unit = unit;
					
				

			

			
				
					
						public Quantity (String amountString, Unit unit) {
					
				

				
					
						this (new Double(amountString).doubleValue(), unit);
					
				

			

			
				
					
						public Quantity (int amount, Unit unit) {
					
				

				
					
						this (new Double(amount).doubleValue(), unit);
					
				

			

			
				
					
						protected void requireNonNull(Object arg) {
					
				

				
					
						if (arg == null) throw new NullPointerException();
					
				

			

			
				
					
						};
					
				

				
					
						The quantity class needs a unit class, which for the purposes of this example need only know its name. A class
					
				

				
					
						that has a name is a common need in these circumstances, so I have an abstract class, DomainObject, for it.
					
				

				
					
						public DomainObject (String name) {
					
				

				
					
						_name = name;
					
				

			

			
				
					
						};
					
				

			

			
				
					
						public String name ()
					
				

			

			
				
					
						return _name;
					
				

			

			
				
					
						{
					
				

			

			
				
					
						};
					
				

			

			
				
					
						};
					
				

			

			
				
					
						};
					
				

			

			
			
		

		
			
				
					
						};
					
				

				
					
						protected String _name = "no name";
					
				

				
					
						};
					
				

			

			
				
					
						public class Unit extends DomainObject
					
				

			

			
				
					
						Registrar
					
				

			

			
				
					
						Another core behavior we will need is to get hold of specific objects without using global variables for
					
				

				
					
						example the unit “breaths per minute”. I need unit to be an
						Entry Point
						 [Fowler] for my objects so I can just
					
				

				
					
						refer to the “breaths per minute” unit by going something like
					
					
						Unit.get(“breaths per minute”)
					
					
						.
					
				

				
					
						I can implement this in two ways: either by having a static variable in the unit class, or by having a Registrar
					
				

				
					
						object that manages these entry points. I prefer the Registrar as it is easier to manage. The Registrar is a
					
				

				
					
						Singleton [Gang of Four] which manages several entry points.
					
				

				
					
						public class Registrar
					
				

			

			
				
					
						{
					
				

			

			
				
					
						private static Registrar _soleInstance = new Registrar();
					
				

				
					
						Each entry point is a Hashtable. Since the Registrar manages several entry points it keeps each entry point as
					
				

				
					
						the value in a Hashtable indexed by some useful name, usually the name of the class that is acting as the entry
					
				

				
					
						point.
					
				

			

			
				
					
						public class Registrar {
					
				

				
					
						private static Registrar _soleInstance = new Registrar();
					
				

				
					
						private Dictionary _entryPoints = new Hashtable();
					
				

			

			
				
					
						private void addObj (String entryPointName, DomainObject newObject) {
					
				

				
					
						Dictionary theEntryPoint = (Dictionary) _entryPoints.get(entryPointName);
					
				

				
					
						if (theEntryPoint == null) {
					
				

				
					
						theEntryPoint = new Hashtable();
					
				

				
					
						 _entryPoints.put(entryPointName, theEntryPoint);
					
				

			

			
				
					
						};
					
				

				
					
						theEntryPoint.put(newObject.name(), newObject);
					
				

			

			
				
					
						};
					
				

			

			
				
					
						private DomainObject getObj (String entryPointName, String objectName) {
					
				

				
					
						Dictionary theEntryPoint = (Dictionary) _entryPoints.get(entryPointName);
					
				

				
					
						assertNonNull (theEntryPoint, "No entry point present for " + entryPointName);
					
				

				
					
						DomainObject answer = (DomainObject) theEntryPoint.get(objectName);
					
				

				
					
						assertNonNull (answer, "There is no " + entryPointName + " called " + objectName);
					
				

				
					
						return answer;
					
				

			

			
				
					
						private void assertNonNull(Object arg, String message) {
					
				

				
					
						if (arg == null) throw new NullPointerException(message);
					
				

			

			
				
					
						I use
						Lazy Initialization
						 [Beck] if a client wants to store a value into an entry point collection that I have not
					
				

				
					
						used yet. To make it a little easier to use the registrar I put some static methods on the class.
					
				

			

			
				
					
						public static void add (String entryPoint, DomainObject newObject)
					
				

			

			
				
					
						{
					
				

			

			
				
					
						_soleInstance.addObj(entryPoint, newObject);
					
				

			

			
				
					
						};
					
				

			

			
				
					
						public static DomainObject get (String entryPointName, String objectName)
					
				

			

			
				
					
						{
					
				

			

			
				
					
						return _soleInstance.getObj(entryPointName, objectName);
					
				

			

			
				
					
						};
					
				

			

			
				
					
						However to make it easier for programmers I use methods on the appropriate classes to get values in and out
					
				

				
					
						of the registrar:
					
				

				
					
						public class Unit extends DomainObject {
					
				

			

			
				
					
						public static Unit get (String name) {
					
				

				
					
						return (Unit) Registrar.get("Unit", name);
					
				

			

			
				
					
						};
					
				

				
					
						public Unit persist()
					
				

			

			
				
					
						{
					
				

			

			
				
					
						};
					
				

			

			
				
					
						};
					
				

			

		

	

 Plik z chomika:

 JLV

 Inne pliki z tego folderu:

 	
 using.design.patterns.in.game.engines.PDF
 (25
 KB)
	
 Wiley - Business Modeling with UML - Business Patterns at Work (2000).pdf
 (4024
 KB)
	
 Wiley - The Art of Software Architecture.pdf
 (6523
 KB)
	
 The Object-Oriented Modeling Process Process Patterns For An Architecture-Driven Approach.pdf
 (85
 KB)
	
 Software Pattern - Design Patterns explained.pdf
 (8120
 KB)

 Inne foldery tego chomika:

 	
 C#

	
 Databases

	
 Java

 Zgłoś jeśli naruszono regulamin

 	
 Strona główna

	
 Aktualności

	
 Kontakt

	
 Dla Mediów

	
 Dział Pomocy

	
 Opinie

	
 Program partnerski

 	
 Regulamin serwisu

	
 Polityka prywatności

	
 Ochrona praw autorskich

	
 Platforma wydawców

 Copyright © 2012
 Chomikuj.pl

