Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications.pdf

(13071 KB) Pobierz
Frontmatter
ELECTROMAGNETIC
METAMATERIALS:
TRANSMISSION LINE
THEORY AND
MICROWAVE
APPLICATIONS
The Engineering Approach
CHRISTOPHE CALOZ
Ecole Polytechnique de Montreal
TATSUO ITOH
University of California at Los Angeles
A JOHN WILEY & SONS, INC., PUBLICATION
30695846.001.png 30695846.002.png
Copyright
2006 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.
For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United
States at (317) 572-3993 or fax (317) 572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.
Library of Congress Cataloging-in-Publication Data:
Caloz, Christophe, 1969-
Electromagnetic metamaterials : transmission line theory and microwave applications :
the engineering approach / Christophe Caloz, Tatsuo Itoh.
p.cm.
“Wiley-Interscience publication.”
Includes bibliographical references and index.
ISBN-10: 0-471-66985-7 (alk.paper)
ISBN-13: 978-0-471-66985-2 (alk.paper)
1. Magnetic materials. 2. Nanostructured materials. 3. Microwave transmission lines. I.
Itoh, Tatsuo. II. Title.
TK454.4.M3C36 2006
620.1 18 — dc22
2005048976
Printed in the United States of America.
10987654321
To Dominique, Maxime, and Raphael
Christophe
CONTENTS
Preface
xiii
Acknowledgments
xv
Acronyms
xvii
1 Introduction 1
1.1 Definition of Metamaterials (MTMs) and Left-Handed (LH) MTMs, 1
1.2 Theoretical Speculation by Viktor Veselago, 3
1.3 Experimental Demonstration of Left-Handedness, 4
1.4 Further Numerical and Experimental Confirmations, 9
1.5 “Conventional” Backward Waves and Novelty of LH MTMs, 10
1.6 Terminology, 12
1.7 Transmission Line (TL) Approach, 12
1.8 Composite Right/Left-Handed (CRLH) MTMs, 16
1.9 MTMs and Photonic Band-Gap (PBG) Structures, 17
1.10 Historical “Germs” of MTMs, 20
References, 22
2 Fundamentals of LH MTMs
27
2.1 Left-Handedness from Maxwell’s Equations, 28
2.2 Entropy Conditions in Dispersive Media, 33
2.3 Boundary Conditions, 38
vii
viii
CONTENTS
2.4 Reversal of Doppler Effect, 39
2.5 Reversal of Vavilov- Cerenkov Radiation, 41
2.6 Reversal of Snell’s Law: Negative Refraction, 43
2.7 Focusing by a “Flat LH Lens”, 46
2.8 Fresnel Coefficients, 48
2.9 Reversal of Goos-Hanchen Effect, 50
2.10 Reversal of Convergence and Divergence in Convex and Concave
Lenses, 51
2.11 Subwavelength Diffraction, 53
References, 57
3TLTheoryofMTMs
59
3.1 Ideal Homogeneous CRLH TLs, 59
3.1.1 Fundamental TL Characteristics, 60
3.1.2 Equivalent MTM Constitutive Parameters, 67
3.1.3 Balanced and Unbalanced Resonances, 70
3.1.4 Lossy Case, 74
3.2 LC Network Implementation, 79
3.2.1 Principle, 79
3.2.2 Difference with Conventional Filters, 83
3.2.3 Transmission Matrix Analysis, 85
3.2.4 Input Impedance, 100
3.2.5 Cutoff Frequencies, 103
3.2.6 Analytical Dispersion Relation, 106
3.2.7 Bloch Impedance, 113
3.2.8 Effect of Finite Size in the Presence of Imperfect
Matching, 115
3.3 Real Distributed 1D CRLH Structures, 119
3.3.1 General Design Guidelines, 120
3.3.2 Microstrip Implementation, 122
3.3.3 Parameters Extraction, 124
3.4 Experimental Transmission Characteristics, 127
3.5 Conversion from Transmission Line to Constitutive Parameters, 131
References, 131
4 Two-Dimensional MTMs
133
4.1 Eigenvalue Problem, 134
4.1.1 General Matrix System, 134
4.1.2 CRLH Particularization, 138
4.1.3 Lattice Choice, Symmetry Points, Brillouin Zone, and 2D
Dispersion Representations, 139
4.2 Driven Problem by the Transmission Matrix Method (TMM), 143
4.2.1 Principle of the TMM, 144
4.2.2 Scattering Parameters, 145
Zgłoś jeśli naruszono regulamin