atmega162.pdf

(5130 KB) Pobierz
ATmega162 datasheet
Features
High-performance, Low-power AVR ® 8-bit Microcontroller
Advanced RISC Architecture
– 131 Powerful Instructions – Most Single-clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-chip 2-cycle Multiplier
High Endurance Non-volatile Memory segments
– 16K Bytes of In-System Self-programmable Flash program memory
– 512 Bytes EEPROM
– 1K Bytes Internal SRAM
– Write/Erase cycles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C (1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Up to 64K Bytes Optional External Memory Space
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– Two 16-bit Timer/Counters with Separate Prescalers, Compare Modes, and
Capture Modes
– Real Time Counter with Separate Oscillator
– Six PWM Channels
– Dual Programmable Serial USARTs
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, Power-save, Power-down, Standby, and Extended Standby
I/O and Packages
– 35 Programmable I/O Lines
– 40-pin PDIP, 44-lead TQFP, and 44-pad MLF
Operating Voltages
– 1.8 - 5.5V for ATmega162V
– 2.7 - 5.5V for ATmega162
Speed Grades
– 0 - 8 MHz for ATmega162V (see Figure 113 on page 266 )
– 0 - 16 MHz for ATmega162 (see Figure 114 on page 266 )
8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash
ATmega162
ATmega162V
2513K–AVR–07/09
245849026.055.png 245849026.066.png 245849026.077.png 245849026.088.png 245849026.001.png 245849026.007.png 245849026.008.png 245849026.009.png
 
Pin
Configurations
Figure 1. Pinout ATmega162
PDIP
(OC0/T0) PB0
(OC2/T1) PB1
(RXD1/AIN0) PB2
(T XD1 /AIN1) PB3
(SS/OC3B) PB4
(MOSI) PB5
(MISO) PB6
(SC K) PB7
RESET
(RXD0) PD0
(TXD0) PD1
(INT0/XCK1) PD2
(INT1/ICP3) PD3
(TOSC1/XCK0/OC3A) PD4
(OC1A/TO SC2) PD5
( WR) PD6
(RD) PD7
XTAL2
XTAL1
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
VCC
PA0 (AD0/PCINT0)
PA1 (AD1/PCINT1)
PA2 (AD2/PCINT2)
PA3 (AD3/PCINT3)
PA4 (AD4/PCINT4)
PA5 (AD5/PCINT5)
PA6 (AD6/PCINT6)
PA7 (AD7/PCINT7)
PE0 (ICP1/INT2)
PE1 (ALE)
PE2 (OC1B)
PC7 (A15/TDI/PCINT15)
PC6 (A14/TDO/PCINT14)
PC5 (A13/TMS/PCINT13)
PC4 (A12/TCK/PCINT12)
PC3 (A11/PCINT11)
PC2 (A10/PCINT10)
PC1 (A9/PCINT9)
PC0 (A8/PCINT8)
TQFP/MLF
(MOSI) PB5
(MISO) PB6
(SC K) PB7
RESET
(RXD0) PD0
VCC
(TXD0) PD1
(INT0/XCK1) PD2
(INT1/ICP3) PD3
(TOSC1/XCK0/OC3A) PD4
(OC1A/TOSC2) PD5
1
2
3
4
5
6
7
8
9
10
11
44 42 40 38 36 34
43 41 39 37 35
33
32
31
30
29
28
27
26
25
24
23
PA4 (AD4/PCINT4)
PA5 (AD5/PCINT5)
PA6 (AD6/PCINT6)
PA7 (AD7/PCINT7)
PE0 (ICP1/INT2)
GND
PE1 (ALE)
PE2 (OC1B)
PC7 (A15/TDI/PCINT15)
PC6 (A14/TDO/PCINT14)
PC5 (A13/TMS/PCINT13)
13 15 17 19 21
12 14 16 18 20 22
NOTE:
MLF bottom pad should
be soldered to ground.
Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.
2
ATmega162/V
2513K–AVR–07/09
245849026.010.png 245849026.011.png 245849026.012.png 245849026.013.png 245849026.014.png 245849026.015.png 245849026.016.png 245849026.017.png 245849026.018.png 245849026.019.png 245849026.020.png 245849026.021.png 245849026.022.png 245849026.023.png 245849026.024.png 245849026.025.png
ATmega162/V
Overview
The ATmega162 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega162
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize
power consumption versus processing speed.
Block Diagram
Figure 2. Block Diagram
PA0 - PA7
PE0 - PE2
PC0 - PC7
VCC
PORTA DRIVERS/BUFFERS
PORTE
DRIVERS/
BUFFERS
PORTC DRIVERS/BUFFERS
GND
PORTA DIGITAL INTERFACE
PORTE
DIGITAL
INTERFACE
PORTC DIGITAL INTERFACE
PROGRAM
COUNTER
STACK
POINTER
INTERNAL
OSCILLATOR
XTA L1
PROGRAM
FLASH
SRAM
WATCHDOG
TIMER
OSCILLATOR
XTAL2
INSTRUCTION
REGISTER
GENERAL
PURPOSE
REGISTERS
MCU CTRL.
& TIMING
RESET
INSTRUCTION
DECODER
X
Y
Z
INTERRUPT
UNIT
INTERNAL
CALIBRATED
OSCILLATOR
CONTROL
LINES
ALU
TIMERS/
COUNTERS
OSCILLATOR
AVR CPU
STATUS
REGISTER
EEPROM
PROGRAMMING
LOGIC
SPI
USART0
+
-
COMP.
INTERFACE
USART1
PORTB DIGITAL INTERFACE
PORTD DIGITAL INTERFACE
PORTB DRIVERS/BUFFERS
PORTD DRIVERS/BUFFERS
PB0 - PB7
PD0 - PD7
3
2513K–AVR–07/09
245849026.026.png 245849026.027.png 245849026.028.png 245849026.029.png 245849026.030.png 245849026.031.png 245849026.032.png 245849026.033.png 245849026.034.png 245849026.035.png 245849026.036.png 245849026.037.png 245849026.038.png 245849026.039.png 245849026.040.png 245849026.041.png 245849026.042.png 245849026.043.png 245849026.044.png 245849026.045.png 245849026.046.png 245849026.047.png 245849026.048.png 245849026.049.png 245849026.050.png 245849026.051.png 245849026.052.png 245849026.053.png 245849026.054.png 245849026.056.png 245849026.057.png 245849026.058.png 245849026.059.png 245849026.060.png 245849026.061.png 245849026.062.png 245849026.063.png 245849026.064.png 245849026.065.png 245849026.067.png 245849026.068.png 245849026.069.png 245849026.070.png 245849026.071.png 245849026.072.png 245849026.073.png 245849026.074.png 245849026.075.png 245849026.076.png 245849026.078.png 245849026.079.png 245849026.080.png 245849026.081.png 245849026.082.png 245849026.083.png 245849026.084.png 245849026.085.png 245849026.086.png 245849026.087.png 245849026.089.png 245849026.090.png 245849026.091.png 245849026.092.png 245849026.093.png 245849026.094.png 245849026.095.png 245849026.096.png 245849026.097.png
 
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.
The ATmega162 provides the following features: 16K bytes of In-System Programmable Flash
with Read-While-Write capabilities, 512 bytes EEPROM, 1K bytes SRAM, an external memory
interface, 35 general purpose I/O lines, 32 general purpose working registers, a JTAG interface
for Boundary-scan, On-chip Debugging support and programming, four flexible Timer/Counters
with compare modes, internal and external interrupts, two serial programmable USARTs, a pro-
grammable Watchdog Timer with Internal Oscillator, an SPI serial port, and five software
selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode
saves the register contents but freezes the Oscillator, disabling all other chip functions until the
next interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to
run, allowing the user to maintain a timer base while the rest of the device is sleeping. In
Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping.
This allows very fast start-up combined with low-power consumption. In Extended Standby
mode, both the main Oscillator and the Asynchronous Timer continue to run.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot Pro-
gram running on the AVR core. The Boot Program can use any interface to download the
Application Program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega162 is a powerful microcontroller that provides a highly flexi-
ble and cost effective solution to many embedded control applications.
The ATmega162 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators,
and evaluation kits.
ATmega161 and
ATmega162
Compatibility
The ATmega162 is a highly complex microcontroller where the number of I/O locations super-
sedes the 64 I/O locations reserved in the AVR instruction set. To ensure back-ward
compatibility with the ATmega161, all I/O locations present in ATmega161 have the same loca-
tions in ATmega162. Some additional I/O locations are added in an Extended I/O space starting
from 0x60 to 0xFF, (i.e., in the ATmega162 internal RAM space). These locations can be
reached by using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT
instructions. The relocation of the internal RAM space may still be a problem for ATmega161
users. Also, the increased number of Interrupt Vectors might be a problem if the code uses
absolute addresses. To solve these problems, an ATmega161 compatibility mode can be
selected by programming the fuse M161C. In this mode, none of the functions in the Extended
I/O space are in use, so the internal RAM is located as in ATmega161. Also, the Extended Inter-
rupt Vec-tors are removed. The ATmega162 is 100% pin compatible with ATmega161, and can
replace the ATmega161 on current Printed Circuit Boards. However, the location of Fuse bits
and the electrical characteristics differs between the two devices.
ATmega161
Compatibility Mode
Programming the M161C will change the following functionality:
The extended I/O map will be configured as internal RAM once the M161C Fuse is
programmed.
4
ATmega162/V
2513K–AVR–07/09
245849026.002.png 245849026.003.png 245849026.004.png
ATmega162/V
The timed sequence for changing the Watchdog Time-out period is disabled. See “Timed
Sequences for Changing the Configuration of the Watchdog Timer” on page 56 for details.
The double buffering of the USART Receive Registers is disabled. See “AVR USART vs.
AVR UART – Compatibility” on page 168 for details.
Pin change interrupts are not supported (Control Registers are located in Extended I/O).
One 16 bits Timer/Counter (Timer/Counter1) only. Timer/Counter3 is not accessible.
Note that the shared UBRRHI Register in ATmega161 is split into two separate registers in
ATmega162, UBRR0H and UBRR1H. The location of these registers will not be affected by the
ATmega161 compatibility fuse.
Pin Descriptions
VCC
Digital supply voltage
GND
Ground
Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will
source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a
reset condition becomes active, even if the clock is not running.
Port A also serves the functions of various special features of the ATmega162 as listed on page
72 .
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATmega162 as listed on page
72 .
Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins
PC7(TDI), PC5(TMS) and PC4(TCK) will be activated even if a Reset occurs.
Port C also serves the functions of the JTAG interface and other special features of the
ATmega162 as listed on page 75 .
5
2513K–AVR–07/09
245849026.005.png 245849026.006.png
Zgłoś jeśli naruszono regulamin