Olsztyn, dnia 9 grudnia 2008r
Wyznaczanie charakterystyki diody półprzewodnikowejsprawozdanie nr 8
Temat nr 50
Arasimowicz Artur Sieg Szymongrupa 1
zespół nr 1
1. Wprowadzenie – opis teoretyczny zadania
Dioda jest elementem elektronicznym wyposażonym w dwie elektrody - anodę i katodę. Cechą charakterystyczną jest wyłącznie jednokierunkowy przepływ prądu od anody do katody. W praktyce, w zależności od sposobu wykonania, występuje większa lub mniejsza różnica między rezystancją mierzoną przy przepływie prądu w kierunku od anody do katody (kierunek przewodzenia - mała rezystancja) a mierzoną przy przepływie prądu w kierunku od katody do anody (kierunek zaporowy - duża rezystancja).
Półprzewodniki są to substancje zachowujące się w pewnych warunkach tak jak dielektryk, czyli przedmiot nie przewodzący prądu elektrycznego, ze względu na brak wolnych elektronów, a w pewnym zakresie półprzewodnik staje się przewodnikiem, czyli posiada małą oporność i wolne elektrony, które umożliwiają przepływ prądu elektrycznego. Istota przewodnictwa elektrycznego w półprzewodnikach polega na przemieszczaniu się elektronów swobodnych pod wpływem pola elektrycznego. Ważną cechą półprzewodników jest to, że ich zdolność przewodzenia zależy od wielu czynników, w tym głównie od zawartości domieszek i temperatury. Typowymi materiałami na półprzewodniki są: krzem, german, arsenek galu, lub antymonek galu które w czystej postaci nie przewodzą prądu. Wszystkie półmetale są półprzewodnikami.
Dioda półprzewodnikowa to dwukońcówkowy element półprzewodnikowy. Zbudowana jest z dwóch warstw półprzewodnika, odmiennie domieszkowanych - typu n i typu p, tworzących razem złącze p-n, lub z połączenia półprzewodnika z odpowiednim metalem - dioda Schottky'ego. Końcówka dołączona do obszaru n nazywa się katodą, a do obszaru p - anodą. Element ten charakteryzuje się jednokierunkowym przepływem prądu - od anody do katody, w drugą stronę prąd nie płynie (zawór elektryczny).
2. Zjawiska, prawa i zasady związane z doświadczenie
1) Budowa ciał
Struktura elektronowa krystalicznych ciał stałych decyduje o ich własnościach elektronowych. Ciała krystaliczne stanowi przestrzenny zbiór atomów lub cząsteczek (jonów) w postaci pewnego rodzaju elementarnych komórek regularnie powtarzających się w przestrzeni trójwymiarowej. W każdym atomie elektrony zajmuj pewne dozwolone orbity, którym zgodnie z regułami mechaniki kwantowej odpowiadają dyskretne poziomy energetyczne. Najwyższym obsadzonym poziomem jest poziom walencyjny, od jego obsadzenia zależą optyczne, chemiczne i elektryczne własności atomu. Na skutek oddziaływania elektronów z sąsiadujących atomów, każdy z poziomów energetycznych atomu rozszczepia się, tworząc całe pasmo dozwolonych i obsadzonych poziomów: dolna i górna granica pasma pozostają przy tym niezależne od wielkości próbki. Powyżej pasma walencyjnego występuje pasmo zabronione: żaden elektron nie może mieć energii zawierającej się w jego granicach. Jeszcze wyżej energetycznie usytuowane jest pasmo przewodnictwa, w którym mogą się znaleść elektrony nie związane już praktycznie z żadnym z atomów. Ponieważ wszystkie pasma poniżej walencyjnego są w pełni obsadzone, a elektrony nie mogą ich opuszczać, w schematycznych rysunkach pasmowej budowy kryształów przedstawia się jedynie położenie pasm walencyjnych, zabronionego i przewodnictwa. Przyjmując czysto formalny warunek klasyfikacji – szerokość energetycznego pasma zabronionego, kryształy można podzielić na trzy klasy: izolatory o szerokości pasma zabronionego ,
Półprzewodniki ) i metale, w których pasmo walencyjne i przewodnictwa nakładają się wzajemnie. Schematyczny obraz pasmowej budowy kryształów:
2) Półprzewodniki samoistne
Materiał krystaliczny będzie wykazywał przewodność różną od zera jedynie gdy wśród pasm energetycznych co najmniej jedno będzie niecałkowicie zapełnione. Warunek ten spełniają półprzewodniki, w których (w odróżnieniu od izolatorów) istnieją mechanizmy sprawiające, że pasma w innych warunkach zapełnione są jedynie częściowo obsadzone lub pasma puste zostają częściowo wypełnione. Do półprzewodników zaliczane są materiały wielce różnorodne pod względem budowy chemicznej, a więc zarówno czyste pierwiastki jak german, krzem czy pewne odmiany węgla, tlenki i siarczki niektórych metali np. CuO, ZnO, PbS, związki międzymetaliczne jak InSb, GaAs i wiele innych. W układzie okresowym Si i Ge znajdują się w IV grupie i każdy z nich może być czterowartościowy, mając cztery elektrony walencyjne mogące tworzyć wiązanie chemiczne. W formie krystalicznej pierwiastki te mają strukturę diamentu, dla której każdy atom powiązany jest ze swymi czterema sąsiadami parami elektronów. Wiązanie takie nazywane jest kowalencyjnym (atomowym). Jest ono trwałe i trzeba znacznej energii, równej szerokości pasma zabronionego, aby uwolnić elektron.
W półprzewodnikach pasmo walencyjne jest całkowicie zapełnione, jedynie w temperaturze zera bezwzględnego, w każdej wyższej temperaturze pewna część elektronów jest termicznie wzbudzana do wyższego, pustego pasma przewodnictwa. Uwolnione elektrony pozostawiają w sieci krystalicznej naładowane dodatnio jony. Równoważny im ładunek dodatni może również poruszać się w krysztale od atomu do atomu, dzięki przeskokom elektronów walencyjnych między sąsiednimi atomami. Ten typ przepływu prądu w paśmie walencyjnym nazywany jest prądem dziurowym. W sumie, w półprzewodnikach możliwe są dwa mechanizmy przepływu prądu elektrycznego: ruch elektronów w paśmie przewodnictwa i ruch dziur w paśmie walencyjnym. W półprzewodnikach samoistnych, liczba dziur i elektronów z pasma przewodnictwa jest jednakowa, a prąd wypadkowy jest sumą porównywalnych natężeń prądów dziur i elektronów.
3) Półprzewodniki domieszkowe
Możliwe jest jednak sztuczne tworzenie materiałów o dominującym przewodnictwie elektronowym (półprzewodniki typu „n”, zwane również donorowymi) lub przewodnictwie
dziur (półprzewodniki typu „p”, zwane akceptorowymi). Przykładowo, mechanizm uzyskiwanie materiału donorowego może być następujący. Wprowadzając do czystego germanu lub krzemu arsen, który ma pięć elektronów walencyjnych, zostaje on wbudowany w istniejącą strukturę krystaliczną. Cztery elektrony tworzą z sąsiednimi atomami wiązania kowalencyjne, piąty elektron pozostaje luźno związany ze swym atomem arsenu tworząc nowe pasmo (tzw. donorowe), leżące bardzo blisko pasma przewodnictwa (słabo związany elektron ma energię niemal równą elektronom swobodnym).
W temperaturze pokojowej energia termiczna elektronów jest wystarczająca do przeniesienia ich z pasma donorowego do pustego pasma przewodnictwa. Pozbawiony elektronu atom domieszki (As) staje się natomiast jonem dodatnim, sztywno umiejscowionym w sieci krystalicznej. Duża energia pasma donorowego stanowi dla elektronów walencyjnych zbyt wysoką barierę aby w paśmie mogły pojawić się dziury przewodzące prąd elektryczny. W materiale typu „n” nośnikami większościowymi są zatem elektrony z pasma przewodnictwa, a koncentracja i rodzaj atomów domieszki decyduje o własnościach półprzewodnika. W półprzewodnikach typu „p” nośnikami większościowymi są dziury. Materiał taki powstaje w wyniku domieszkowania atomami trójwartościowymi np. glinu (Al) czy indu (In). W efekcie jedno z wiązań kowalencyjnych atomu domieszki jest niekompletne i może przyjąć elektron z pasma walencyjnego. W poziomie tym powstaje zatem dziura o ładunku dodatnim, mogąca poruszać się pod wpływem przyłożonego pola elektrycznego. Poziom akceptorowy leży nieco ponad pasmem walencyjnym.
4) Złącza p-n
O praktycznym wykorzystaniu półprzewodników zadecydowały własności układu stanowiącego połączenie półprzewodnika typu „n” z półprzewodnikiem typu „p”, a ściślej mówiąc cienkiej warstwy granicznej zwanej złączem p-n. Duża różnica koncentracji no...
rako91