Representation.Theory.[sharethefiles.com].pdf

(170 KB) Pobierz
661353995 UNPDF
RepresentationTheory
Representations
Let G beagroupand V avectorspaceoverafield k .A representation of G on V isagroup
homomorphism ½ : G! Aut( V ).The degree (or dimension )of ½ isjustdim V .
Equivalentrepresentations
Let ½ : G! Aut( V )and ½ 0 : G! Aut( V 0 )betworepresentationsof G .Thena G-linearmap
from ½ to ½ 0 isalinearmap Á : V!V 0 suchthat
Á± ( ½ ( g ))=( ½ 0 ( g )) ±Á
forall g2G ,orequivalentlysuchthatthefollowingdiagramcommutes:
V
½ ( g ) /
V
Á
Á
² ²
V 0 ½ 0 ( g ) / / V 0
Ifadditionally Á isanisomorphismofvectorspacesthenwesaythat Á isan isomorphism from
½ to ½ 0 ,andthat ½ is isomorphic to ½ 0 .Noticethat Á : V!V 0 isanisomorphismfrom ½ to ½ 0
Á ¡ 1 isanisomorphismfrom ½ 0 to ½ ,soisomorphismisanequivalencerelation.
Notation
If g2G and v2V ,weoftenwrite gv insteadof ½ ( g ) v .Inthisnotation, Á : V!V 0 isan
isomorphismi®
( v )= Á ( gv )
forall g2G andall v2V .
Subrepresentations
If G actson V ,and W isasubspaceof V suchthat g ( W ) µW forall g2G ,thenwesaythat
W isa subrepresentation of V .
Asubrepresentationof V is trivial ifitis0or V ,or non-trivial otherwise.
Irreducibleandindecomposiblerepresentations
Arepresentationiscalled irreducible ifithasnonon-trivialsubrepresentations.
V isa directsum of W and W 0 ,written V = W©W 0 ,if W and W 0 aresubrepresentationsof
V and V = W©W 0 asvectorspaces.Givenarepresentation V ,wewanttobreakitupinto
smallerpieces,thatis,writeisas
V = W 1 ©W 2 ©¢¢¢©W k
whereeach W i doesnotbreakupintosmallerpieces.
1
661353995.003.png
Wesaythatarepresentationis indecomposible ifitisnotadirectsumofsmallerrepresentations.
If V isindecomposiblethenitisirreducible,buttheconversedoesnotfollowingeneral.
Permutationrepresentations
Let G actonaset X .Thenthe permutationrepresentation of G withrespecttothisaction,
k [ X ],isa jXj -dimensionalvectorspaceover k withbasis fe x jx2Xg .Theactionof G onthis
vectorspaceisdefinedby
ge x = e gx
forall g2G andall x2X . k [ X ]isneverirreducible,forthe1-dimensionalsubspacespanned
x2X e x isinvariantunder G .
Faithfulrepresentations
If ½ : G! Aut( V )isarepresentationthenthe kernel of ½ isker ½ = fg2Gj½ ( g )=id g .
Arepresentationof G is faithful ifker ½ = f 1 g ;inthiscasewesaythat G acts faithfully on V ,
and G isisomorphictoasubgroupofAut( V ).Notethatker ½ C G ,soif G issimplethenevery
non-trivialrepresentationisfaithful.
If G isafinitegroupthenitposessesafaithfulfinite-dimensionalrepresentation.For G actson
itselffaithfullybyleft-multiplication;thusthepermuationrepresentation k [ G ]forthisactionis
faithful.
Completereducibility
Let G beafinitegroupand V arepresentationof G overafieldofcharacteristiczero.Then
1.If WµV isa G -invariantsubspacethenthereexistsa G -invariantcomplementto W .
2. V isirreducible ()V isindecomposible.
Proof
1.Let W 0 beanyvectorspacecomplementto W .Let ¼ : V!W betheprojectionof V
onto W definedby ¼ ( w + w 0 )= w forall w2W and w 0 2W 0 ,anddefine
¯ ¼ ( v )= jGj ¡ 1 X
g2G
¡ g ¡ 1 v ¢ :
Then
(a)If v2V then¯ ¼ ( v ) 2W ,andif w2W then¯ ¼ ( w )= w ,so¯ ¼ isaprojectiononto W .
(b)im¯ ¼ = W and¯ ¼j W =id,so
ker¯ ¼© im¯ ¼ = V:
(c)Forall v2V
h ¯ ¼ ( v )= jGj ¡ 1 X
g2G
hg¼ ¡ g ¡ 1 v ¢ = jGj ¡ 1 X
g2G
( hg ) ¼ ¡ ( hg ) ¡ 1 hv )=¯ ¼ ( hv ¢
so¯ ¼ is G -linear.
(d)If¯ ¼ ( v )=0then h ¯ ¼ ( v )=¯ ¼ ( hv )=0,soker¯ ¼ is G -invariant.
Henceker¯ ¼ isa G -invariantcomplementto W .
2.Thisfollowseasilyfrom(1).
2
by P
661353995.004.png
Characters
Forthewholeofthissections,allgroupswillbefiniteandallrepresentationswillbeonfinite-
dimensionalvectorspacesoverC.
Definition
If ½ : G! Aut( V )isarepresention,the character of ½ isthefunction
 : G¡! C
g7¡! tr( ½ ( g )) :
Propertiesofthecharacter
1. Â doesnotdependonachoiceofbasisfor V .
2.If ½ and ½ 0 areisomorphicrepresentationsthen  ½ ( g )=  ½ 0 ( g )forall g2G .
3. Â (1)=dim V .
4.  ( g )=  ( hgh ¡ 1 )andso  isconstantonconjugacyclassesof G .
5. Â ( g )= Â ( g ¡ 1 ).
6.  ½©½ 0 ( g )=  ½ ( g )+  ½ 0 ( g ).
Thespaceofclassfunctions
A classfunction on G isafunction f : G! Cwhichisconstantonconjugacyclassesof G .So
if V isarepresentationof G overCthen  isaclassfunctionon G .Wewrite C G forthesetof
allclassfunctionson G .Thisisacomplexvectorspace,withabasis
± O : G¡! C
(
1 if g2O
0 if g=2O
g7¡!
where O rangesovertheconjugacyclassesof G .
WecandefineaHermitianinnerproducton C G by
hf;f 0 i = jGj ¡ 1 X
g2G
f ( g ) f 0 ( g ) :
If ½ and ½ 0 areirreduciblerepresentations,then
(
1 if ½ isisomorphicto ½ 0
0 if ½ isnotisomorphicto ½ 0 .
hÂ;Â 0 i =
Thustheirreduciblecharactersformpartofanorthonormalbasisfor C G ,andsothenumberof
distinctirreduciblereresentationsisatmostthenumberofconjugacyclassesof G .Infact,the
3
661353995.005.png
 
irreduciblecharactersformanorthonormalbasisforC G ,andhencetherearepreciselyasmany
distinctirreduciblerepresentationsasthereareconjugacyclassesof G .
Consequencesoforthogonality
If ½ isanarbitraryrepresentationof G withcharacter  ,and  1 ;:::; k arethedistinctirre-
duciblecharacters,thenbycompletereducibility
 = n 1  1 + ¢¢¢ + n k  k :
forsome n i 2 N.Therefore hÂ;Â i i = n i byorthogonality,andso
 =
X
n i  i
where n i = hÂ;Â i i .Thus
1.Inanydecompositionof ½ intoasumofirreduciblerepresentations,eachirreduciblerep-
resentationoccursthesamenumberoftimes.
2.If ½ and ½ 0 arerepresentationsof G withthesamecharacter,then ½ » = ½ 0 .
3.With n i definedasabove,
X
hÂ;Âi =
n 2 i
andso ½ isirreduciblei® hÂ;Âi =1.
Theregularrepresentation
Anygroup G actsonitselfbyleft-multiplication.Thepermutationrepresentationofthisaction
iscalledthe regularrepresentation of G .If  isthecharacteroftheregularrepresentationof G
then
(
jGj if g =1
0 otherwise.
 ( g )=
Hence
C[ G ]=(dim ½ 1 ) ½ 1 ©¢¢¢© (dim ½ k ) ½ k ;
andinparticular
X
jGj =
(dim ½ i ) 2 :
Columnorthogonality
Fix g and h2G .Then
X
(
jC G ( h ) j if g isconjugateto h
0 if g isnotconjugateto h .
 ( g )  ( h )=
 irreducible
Thisisaformalconsequenceoftheorthogonalityofcharacters.
4
Proofoforthogonality
Firstweneedthefollowinglemma.
Theorem(Schur’sLemma)
Supposethat( ½;V )and( ½ 0 ;V 0 )areirreduciblerepresentationsof G overC,withcharacters Â
and  0 respectively.Supposethat Á : V!V 0 isa G -linearmap.Then
1.Either Á isanisomorphismor Á =0.
2.If Á : V!V isanisomorphismthen Á ismultiplicationbyascalar ¸2 C,andso
(
C if ½ isisomorphicto ½ 0
0 if ½ isnotisomorphicto ½ 0 .
Hom G ( V;V 0 )=
Proof
1.Observethatker Á isasubrepresentationof V andim Á isasubrepresentationof V 0 .Since
V and V 0 arebothirreducible,ker Á =0or V andim Á =0or V 0 .Theresultfollows.
2.SinceCisalgebraicallyclosed, Á hasaneigenvalue ¸ andaneigenvector v for ¸ .Then
˜ Á = Á¡¸I isalsoa G -linearmap V!V .But ˜ Á ( v )=0andsoker Á6 =0.Butthensin ce
V isirreducible,ker Á = V andso Á = ¸I .
Nowlet( ½;V )and( ½ 0 ;V 0 )beasaboveandlet Á : V!V 0 be any linearmap.Define
Av Á = jGj ¡ 1 X
g2G
g ¡ 1 Ág:
ThenAv Á isa G -linearmap.Furthermore,tr(Av Á )=tr Á ,soinparticulariftr Á6 =0then
Av Á6 =0.
Nowontothemainpartoftheproof.Choosebasesfor V and V 0 andwrite ½ ( g )and ½ 0 ( g )as
matriceswithrespecttothesebases.Then
hÂ;Âi = jGj ¡ 1 X
g2G
 ( g )  0 ( g )
= jGj ¡ 1 X
g2G
tr( ½ ( g ))tr( ½ ( g ))
= jGj ¡ 1 X
g2G
i;j
½ ( g ) ii ½ 0 ( g ¡ 1 ) jj :
Tobecontinued...
ObserveinpassingthataconsequenceofSchur’sLemmaandtheorthogonalityofcharactersis
thatif( ½;V )and( ½ 0 ;V 0 )aretworepresentationsof G withcharacters  and  0 ,then
dimHom G ( V;V 0 )= hÂ;Â 0 i:
5
661353995.001.png 661353995.002.png
 
Zgłoś jeśli naruszono regulamin