18 - SMACC.pdf

(306 KB) Pobierz
ENVI Tutorial
ENVITutorial:UsingSMACCtoExtractEndmembers
UsingSMACCtoExtractEndmembers
ThistutorialisdesignedtointroduceyoutoENVI’sSMACCendmemberextractiontool.Inthistutorial,
youwillextractendmembersfromanimageofanairfieldinSanDiego,California.
FilesUsedinthisTutorial
ENVIResourceDVD: Data\aviris
File Description
sandiego_reflectance.img (.hdr) HyperspectraldataofanairfieldinSanDiego
sandiego_mask.dat (.hdr) Maskforremovingsaturatedpixelsfromtheairfielddata
Thehyperspectralimage( sandiego_reflectance.img )isofanavalairstationinSanDiego,
California,collectedbytheAirborneVisible/InfraredImagingSpectrometer(AVIRIS)sensor.The
imagewasatmosphericallycorrectedusingENVI’sFLAASHmodule,resultinginareflectanceimage.
2
663172146.010.png 663172146.011.png
ENVITutorial:UsingSMACCtoExtractEndmembers
IntroductiontotheSMACCEndmemberExtraction
Method
TheSequentialMaximumAngleConvexCone(SMACC)spectraltoolfindsspectralendmembersand
theirabundancesthroughoutanimage.Thistoolisdesignedforusewithpreviouslycalibrated
hyperspectraldata.IncomparisontoENVI’sSpectralHourglassWizard,SMACCprovidesafasterand
moreautomatedmethodforfindingspectralendmembers,butitismoreapproximateandyieldsless
precision.
Endmembersarespectrathatarechosentorepresentpuresurfacematerialsinaspectralimage.
Endmembersthatrepresentradianceorreflectancespectramustsatisfyapositivityconstraint
(containingnovalueslessthanzero).Otherphysically-basedconstraintsmaybeimposed,suchasa
sum-to-unityconstraint(thepixelsareweightedmixturesoftheendmembers)orasum-to-unityorless
constraint(thepixelsareweightedmixturesoftheendmembersplusblack).Ifthehyperspectraldataare
calibratedtoeitherradianceorthermalIRemissivity,youshoulduseasum-to-unityunmixingconstraint.
Ifthedataarecalibratedtoreflectance,youshoulduseeitherapositivityonlyorsum-to-unityorless
constraint.SMACCallowsyoutoselectofanyoftheseconstraints.
SMACCusesaconvexconemodel(alsoknownasResidualMinimization)withtheseconstraintsto
identifyimageendmemberspectra.Extremepointsareusedtodetermineaconvexcone,whichdefines
thefirstendmember.Aconstrainedobliqueprojectionisthenappliedtotheexistingconetoderivethe
nextendmember.Theconeisincreasedtoincludethenewendmember.Theprocessisrepeateduntila
projectionderivesanendmemberthatalreadyexistswithintheconvexcone(toaspecifiedtolerance)or
untilthespecifiednumberofendmembersarefound.
Inotherwords,SMACCfirstfindsthebrightestpixelintheimage,thenitfindsthepixelmostdifferent
fromthebrightest.Then,itfindsthepixelmostdifferentfromthefirsttwo.Theprocessisrepeateduntil
SMACCfindsapixelalreadyaccountedforinthegroupofthepreviouslyfoundpixels,oruntilitfindsa
specifiednumberofendmembers.ThespectraofpixelsthatSMACCfindsbecometheendmembersof
theresultingspectrallibrary.
Unlikeconvexmethodsthatrelyonasimplexanalysis,thenumberofendmembersisnotrestrictedby
thenumberofspectralchannels.AlthoughendmembersderivedfromSMACCareunique,aone-to-one
correspondencedoesnotexistbetweenthenumberofmaterialsinanimageandthenumberof
endmembers.SMACCderivesendmembersfrompixelsinanimage.Eachpixelmaycontainonlyone
materialoritmaycontainahighpercentageofasinglematerialwithuniquecombinationsofother
materials.Eachmaterialidentifiedinanimageisdescribedbyasubsetspanningitsspectralvariability.
SMACCprovidesanendmemberbasisthatdefineseachofthesematerialsubsets.SMACCalso
providesabundanceimagestodeterminethefractionsofthetotalspectrallyintegratedradianceor
reflectanceofapixelcontributedbyeachresultingendmember.
Mathematically,SMACCusesthefollowingconvexconeexpansionforeachpixelspectrum
(endmember),definedas:
where:
3
663172146.001.png 663172146.002.png 663172146.003.png
ENVITutorial:UsingSMACCtoExtractEndmembers
i isthepixelindex
j and k aretheendmemberindicesfrom1totheexpansionlength, N
R isamatrixthatcontainstheendmemberspectraascolumns
c isthespectralchannelindex
A isamatrixthatcontainsthefractionalcontribution(abundance)ofeachendmember j ineach
endmember k foreachpixel.
The2Dmatrixrepresentationofaspectralimageisfactoredintoaconvex2Dbasis(aspanofavector
space)timesamatrixofpositivecoefficients.Intheimagematrix(R),therowelementsrepresent
individualpixels,andeachcolumnrepresentsthespectrumofthatpixel.ThecoefficientsinAarethe
fractionalcontributionsorabundancesofthebasismembersoftheoriginalmatrix.Thebasisformsann-
Dconvexconewithinitssubset.Theconvexconeofthedataisthesetofallpositivelinear
combinationsofthedatavectors,whiletheconvexhullisthesetofallweightedaveragesofthedata.
Thefactormatricesarethendeterminedsequentially.Ateachstep,anewconvexconeisformedby
addingtheselectedvectorfromtheoriginalmatrixthatliesfurthestfromtheconedefinedbytheexisting
basis.
SeethefollowingreferenceformoreinformationonSMACC:
Gruninger,J,A.J.RatkowskiandM.L.Hoke.“TheSequentialMaximumAngleConvexCone
(SMACC)EndmemberModel”.ProceedingsSPIE,AlgorithmsforMultispectralandHyper-spectraland
UltraspectralImagery,Vol.5425-1,OrlandoFL,April,2004.
4
663172146.004.png 663172146.005.png
ENVITutorial:UsingSMACCtoExtractEndmembers
OpenandDisplaytheInputData
1. FromtheENVImainmenubar,select File>OpenImageFile .Afileselectiondialogappears.
2. Navigateto Data\aviris andselect sandiego_reflectance.img .Click Open .A
colorcompositeisautomaticallyloadedintoadisplaygroup.
5
663172146.006.png 663172146.007.png
Zgłoś jeśli naruszono regulamin