18 - SMACC.pdf
(
306 KB
)
Pobierz
ENVI Tutorial
ENVITutorial:Using
SMACCtoExtract
Endmembers
Using
SMACC
to
Extract
Endmembers
2
Files
Used
in
this
Tutorial
2
Introduction
to
the
SMACC
Endmember
Extraction
Method
3
Open
and
Display
the
Input
Data
5
Examine
the
Data
and
Start
SMACC
6
Select
the
Input
File
7
Specify
the
SMACC
Parameters
8
Analyze
the
Extracted
Endmembers
and
Their
Abundance
Images
10
1
ENVITutorial:UsingSMACCtoExtractEndmembers
UsingSMACCtoExtractEndmembers
ThistutorialisdesignedtointroduceyoutoENVI’sSMACCendmemberextractiontool.Inthistutorial,
youwillextractendmembersfromanimageofanairfieldinSanDiego,California.
FilesUsedinthisTutorial
ENVIResourceDVD:
Data\aviris
File
Description
sandiego_reflectance.img (.hdr)
HyperspectraldataofanairfieldinSanDiego
sandiego_mask.dat (.hdr)
Maskforremovingsaturatedpixelsfromtheairfielddata
Thehyperspectralimage(
sandiego_reflectance.img
)isofanavalairstationinSanDiego,
California,collectedbytheAirborneVisible/InfraredImagingSpectrometer(AVIRIS)sensor.The
imagewasatmosphericallycorrectedusingENVI’sFLAASHmodule,resultinginareflectanceimage.
2
ENVITutorial:UsingSMACCtoExtractEndmembers
IntroductiontotheSMACCEndmemberExtraction
Method
TheSequentialMaximumAngleConvexCone(SMACC)spectraltoolfindsspectralendmembersand
theirabundancesthroughoutanimage.Thistoolisdesignedforusewithpreviouslycalibrated
hyperspectraldata.IncomparisontoENVI’sSpectralHourglassWizard,SMACCprovidesafasterand
moreautomatedmethodforfindingspectralendmembers,butitismoreapproximateandyieldsless
precision.
Endmembersarespectrathatarechosentorepresentpuresurfacematerialsinaspectralimage.
Endmembersthatrepresentradianceorreflectancespectramustsatisfyapositivityconstraint
(containingnovalueslessthanzero).Otherphysically-basedconstraintsmaybeimposed,suchasa
sum-to-unityconstraint(thepixelsareweightedmixturesoftheendmembers)orasum-to-unityorless
constraint(thepixelsareweightedmixturesoftheendmembersplusblack).Ifthehyperspectraldataare
calibratedtoeitherradianceorthermalIRemissivity,youshoulduseasum-to-unityunmixingconstraint.
Ifthedataarecalibratedtoreflectance,youshoulduseeitherapositivityonlyorsum-to-unityorless
constraint.SMACCallowsyoutoselectofanyoftheseconstraints.
SMACCusesaconvexconemodel(alsoknownasResidualMinimization)withtheseconstraintsto
identifyimageendmemberspectra.Extremepointsareusedtodetermineaconvexcone,whichdefines
thefirstendmember.Aconstrainedobliqueprojectionisthenappliedtotheexistingconetoderivethe
nextendmember.Theconeisincreasedtoincludethenewendmember.Theprocessisrepeateduntila
projectionderivesanendmemberthatalreadyexistswithintheconvexcone(toaspecifiedtolerance)or
untilthespecifiednumberofendmembersarefound.
Inotherwords,SMACCfirstfindsthebrightestpixelintheimage,thenitfindsthepixelmostdifferent
fromthebrightest.Then,itfindsthepixelmostdifferentfromthefirsttwo.Theprocessisrepeateduntil
SMACCfindsapixelalreadyaccountedforinthegroupofthepreviouslyfoundpixels,oruntilitfindsa
specifiednumberofendmembers.ThespectraofpixelsthatSMACCfindsbecometheendmembersof
theresultingspectrallibrary.
Unlikeconvexmethodsthatrelyonasimplexanalysis,thenumberofendmembersisnotrestrictedby
thenumberofspectralchannels.AlthoughendmembersderivedfromSMACCareunique,aone-to-one
correspondencedoesnotexistbetweenthenumberofmaterialsinanimageandthenumberof
endmembers.SMACCderivesendmembersfrompixelsinanimage.Eachpixelmaycontainonlyone
materialoritmaycontainahighpercentageofasinglematerialwithuniquecombinationsofother
materials.Eachmaterialidentifiedinanimageisdescribedbyasubsetspanningitsspectralvariability.
SMACCprovidesanendmemberbasisthatdefineseachofthesematerialsubsets.SMACCalso
providesabundanceimagestodeterminethefractionsofthetotalspectrallyintegratedradianceor
reflectanceofapixelcontributedbyeachresultingendmember.
Mathematically,SMACCusesthefollowingconvexconeexpansionforeachpixelspectrum
(endmember),definedas:
where:
3
ENVITutorial:UsingSMACCtoExtractEndmembers
i
isthepixelindex
j
and
k
aretheendmemberindicesfrom1totheexpansionlength,
N
R
isamatrixthatcontainstheendmemberspectraascolumns
c
isthespectralchannelindex
A
isamatrixthatcontainsthefractionalcontribution(abundance)ofeachendmember
j
ineach
endmember
k
foreachpixel.
The2Dmatrixrepresentationofaspectralimageisfactoredintoaconvex2Dbasis(aspanofavector
space)timesamatrixofpositivecoefficients.Intheimagematrix(R),therowelementsrepresent
individualpixels,andeachcolumnrepresentsthespectrumofthatpixel.ThecoefficientsinAarethe
fractionalcontributionsorabundancesofthebasismembersoftheoriginalmatrix.Thebasisformsann-
Dconvexconewithinitssubset.Theconvexconeofthedataisthesetofallpositivelinear
combinationsofthedatavectors,whiletheconvexhullisthesetofallweightedaveragesofthedata.
Thefactormatricesarethendeterminedsequentially.Ateachstep,anewconvexconeisformedby
addingtheselectedvectorfromtheoriginalmatrixthatliesfurthestfromtheconedefinedbytheexisting
basis.
SeethefollowingreferenceformoreinformationonSMACC:
Gruninger,J,A.J.RatkowskiandM.L.Hoke.“TheSequentialMaximumAngleConvexCone
(SMACC)EndmemberModel”.ProceedingsSPIE,AlgorithmsforMultispectralandHyper-spectraland
UltraspectralImagery,Vol.5425-1,OrlandoFL,April,2004.
4
ENVITutorial:UsingSMACCtoExtractEndmembers
OpenandDisplaytheInputData
1. FromtheENVImainmenubar,select
File>OpenImageFile
.Afileselectiondialogappears.
2. Navigateto
Data\aviris
andselect
sandiego_reflectance.img
.Click
Open
.A
colorcompositeisautomaticallyloadedintoadisplaygroup.
5
Plik z chomika:
Crispini
Inne pliki z tego folderu:
01 - ENVI_Quick_Start.pdf
(479 KB)
02 - ENVI_Intro.pdf
(538 KB)
03 - Interactive_Display.pdf
(369 KB)
04 - Classification_Methods.pdf
(528 KB)
05 - Decision_Tree.pdf
(230 KB)
Inne foldery tego chomika:
! Alfabetycznie
MobiPocket Reader
Zgłoś jeśli
naruszono regulamin