Development of Advanced Reprocessing Technologies purex1.pdf

(426 KB) Pobierz
Development of Advanced Reprocessing Technologies - NTR2008 Supplement
Development of Advanced Reprocessing Technologies
A.
Introduction
Currentlyabout10500tHM(tonnesofheavymetal)ofspentfuelaredischargedannuallyfrom
nuclear power reactors worldwide. Although this spent fuel still contains substantial fissionable
material(uraniumandplutonium)thatcanbereprocessedandrecycledasfuel,only15%iscurrently
reprocessed.Formostofnuclearpower’shistory,reprocessingandrecyclingoftheseparatedUand
Puinfastreactorshasbeenthefavouredstrategyforthebackendofthefuelcycle.Whilemost
countrieshaveadopteda‘waitandsee’strategyonthismatter,somecountrieshavedecided,dueto
proliferationconcernsandalackofeconomicstimulus,toregardthespentfuelaswasteandpreferto
disposeofitafter3040years’storagewithoutreprocessing.Lately,however,insomeofthese
countriestherehasbeenaresurgenceofinterestinreprocessingandrecyclingaskeycomponentsof
developingfuturesustainablenuclearenergysystems[Ref.1,2].
Themainpurposeofreprocessingistobetterutilisenaturalresourcebyrecyclingtheremaining
uraniumandplutonium,thusreducingdemandsonfreshuraniumminingandmillingandensuringa
moresustainableandlongtermuseofnuclearenergy.Reprocessingandrecyclinginfastreactorshas
thepotentialtoreducetheuraniumdemandperkWhbyafactorof50–100.Reprocessingoffuelfrom
lightwaterreactorsandgascooledreactorsandrecyclingoftheseparatedplutoniumasmixedoxide
(MOX)fuelistodaycommerciallyavailable.
Table1:Compositionofspentfuelfromthermalreactors:associatedissuesandplausiblesolutions
Constituent
Composition in
percentage
Issue
Disposition path
Uranium
~ 95 - 96
An energy resource.
Separated uranium could be
recycled as fuel in reactors.
Plutonium
~ 1.0
An energy resource, but also the
major contributor to long term
radio-toxicity (and heat-load) of
the waste. Separated Pu
constitutes a major proliferation
concern.
Separated Pu could be
recycled in reactors as fuel.
Proliferation concerns could
be reduced by not separating
pure Pu.
Minor actinides
(MAs) primarily
Np, Am, and Cm
~ 0.1
Important contributors to long-
term radio-toxicity of the waste.
Proliferation concerns exist
concerning separated Np.
MAs can be burnt alone or in
combination with Pu in fast
reactors.
Stable or short-
lived FPs (fission
products)
~ 3 - 4
Some FPs such as Cs and Sr are
the primary contributors to the
short term radio-toxicity and heat
source in the waste. Other FPs,
e.g. noble metals, could become
valuable.
Storage of high level waste
(HLW) for a few hundred
years or separation of Cs and
Sr for separate disposal after a
few hundred years storage.
Separated Cs has industrial
applications.
Long-lived fission
products (LLFPs)
viz., Tc and I
~ 0.1
Contributors to the long term
radio-toxicity of the waste.
No industrial process to limit
the problem has been
developed.
352056460.010.png 352056460.011.png 352056460.012.png 352056460.013.png 352056460.001.png
Page 2
FigureIV1showshowtherelativeradiotoxicity 1 ofthedifferentcomponentsofspentnuclearfuel
variesovertime.Forthefirst100yearsafterspentfuelisdischarged,itsradiotoxicityisdetermined
bythefissionproducts.Itisthendeterminedbyplutonium.Iftheplutoniumisremoved,theminor
actinidesdeterminethelongtermradiotoxicity.Itshouldbenotedthatbothscalesarelogarithmic.
FIG. IV-1. Relative radio-toxicity of the different components in spent nuclear fuel from a light water
reactor irradiated to 41 MWd/kgU with respect to the radio-toxicity of the corresponding uranium
ore. [Ref. 3,4]
Incomparisonwithdirectdisposalofspentfuel,presentdayreprocessingalsoprovidessomepositive
effectsontheremainingradioactivewastethatneedsdisposal.Theseinclude:
Longtermradiotoxicityisreduced.Thisreduceslongtermconcernsfortherepository,which
couldsimplifytherepositorydesignandincreasepublic acceptance.
Longtermheatproductionisreduced,whichincreasesthecapacityofarepository,asthe
packagingdensityinmostcasesisdeterminedbytheheatload.
Theseeffectscanbefurtherenhancedinadvancedreprocessingsystems,whereminoractinidesare
alsoseparatedwiththepurposeofburningthem,therebyfurtherreducingthelongtermradiotoxicity
andheatloadintheremainingwaste.Inaddition,somevaluablefissionproductmaterials,e.g.
caesiumandplatinumgroupmetals,couldbeextractedforindustrialuse.Heatreductionismainly
achievedbyremovingthecaesiumandstrontiumfollowedbyplutoniumandamericium.
Thevolumeofhighlevelwasteisreduced.
___________________________________________________________________________
1 Radio-toxicity is calculated by dividing the radioactivity (Ci) of a nuclide in the spent fuel by the maximum
permissible concentration (Ci/m 3 ) of that radionuclide in drinking water.
352056460.002.png
Page 3
B.
PUREX – current industrial reprocessing technology
Allcurrentcommercialreprocessingplantsusethe PUREX 2 process.Itwasdevelopedforcivil
applicationsduringthe1960s,followingexperiencegainedfrommilitaryprogrammes.
InthePUREXprocess(whichissummarizedinFig.IV2),thespentfuelisfirstchoppedintosmall
piecesandthendissolvedinnitricacidandsubjectedtoasolventextractionprocessusingtrinbutyl
phosphate(TBP).UraniumandplutoniumareselectivelytakenupintheTBPphaseresultingingood
separationfromtherestofthefissionproductsandminoractinides 3 ,whichareretainedintheinitial
acidmedium.TheUandPuarethenseparatedinmultistageextractioncyclesandpurified.The
presentstateoftheartinPUREXreprocessingprovidesa99.9%separationofUandPu.Insome
variantsofthePUREXprocessthePuiscoprecipitatedwithuraniumtoavoidtheseparationofpure
plutonium.ThisisthecaseintheJapanesereprocessingplantatRokkasho.Thewastestream(the
liquidhighlevelwaste)thatcontainsfissionproducts,minoractinidesandactivationproducts,is
processedandvitrified,i.e.mixedwithglassmaterialtoformaborosilicateglass,andencapsulatedin
asteelcontainer.
Spent Fuel Storage
Off-gas Treatment
Mechanical
Disassembly
Hulls (HLW)
High Level Waste
Acid recovery
Acid dissolution
Solvent Extraction
Solvent Treatment
Fission Product
Consolidation (HLLW)
High Level Liquid Waste
Solvent Extraction
& Partitioning
Uranium Oxide
Conversion
Plutonium Oxide
Conversion
Reprocessed
Uranium
Plutonium
FIG. IV-2. Key steps in the PUREX process.
InaPUREXreprocessingfacilitythespentfuelisthusseparatedintoitsfourcomponents:uranium,
plutonium,highlevelwastecontainingfissionproductsandothertransuranicelements,andmetallic
wastefromthefuelrodsandassemblies.
ThePUREXtechnologyisactivelyusedonalargescaleinFrance,Japan,India,Russia,andthe
UnitedKingdom.Itisusedtoreprocessuraniumandmixedoxide(MOX)fuelfromdifferenttypesof
reactors (LWR, PHWR, GCR and LMFR 4 ) and also fuel with different chemical forms and
enrichments, e.g. from research reactors. Around 90000tHM have been reprocessed in civilian
___________________________________________________________________________
2 Plutonium-Uranium Extraction (PUREX)
3 The main minor actinides are neptunium, americium and curium
4 LWR = light water reactor, PHWR = pressurized heavy water reactor, GCR = gas cooled reactor and LMFR = liquid
metal cooled fast reactor.
352056460.003.png 352056460.004.png 352056460.005.png 352056460.006.png 352056460.007.png 352056460.008.png
Page 4
reprocessing facilities. The current annual industrial reprocessing capacity is around 4600 tHM
globally,anditisexpectedthatanadditional2000tonnesmightbeaddedinthenext10years.
C.
Developments in reprocessing technologies
The current generation of reprocessing plants has been continuously improved in regard to the
following[Ref.5]:
i)
ii)
reductionofeffluentdischargesandimpactsontheenvironment;
iii)
reduction of occupational exposure (e.g. during preventive maintenance and
inspections);
iv)
reductionsinwastevolumes(ofbothHLWandintermediatelevelwaste(ILW));
v)
simplificationoftheprocess(e.g.throughreducingthenumberofcyclesneeded);
vi)
increasedsafetythroughreducedcriticalityhazards,andbetterproliferationresistance
byrealtimeaccountingofnuclearmaterials.
Neverthelessreprocessingsystemsstillhavetoaddresssomemorechallengingconcerns,namely:
i)
proliferationissuesassociatedwithproducingseparatedplutonium;
ii)
issuesassociatedwithhighlevelwaste,owingtothepresenceofminoractinidesand
longlivedfissionproducts(LLFP);
iii)
economicsandcosts;and
iv)
theprocessingoftransuranicrichfuelsthatarebeingdevelopedforfutureadvanced
nuclearreactors.
Muchoftheongoingdevelopmentworkforreprocessingtechnologiesdealswiththeseissues.The
economiccompetitivenessofreprocessingandrecyclingoffissilematerialsdependsonthepriceof
naturaluraniumandonthepossiblegainsfromreduceddemandsforrepositories.
Collaborative international efforts are underway, including INPRO and GIF 5 , for developing
innovativereactorsandfuelcyclesthatarecompetitiveandsafe,withsimplifiedproceduresfor
managing radioactive waste and with features to increase the proliferation resistance of nuclear
materials.Similartotheevolutionofinnovativenuclearreactordevelopment,reprocessingtechnology
isevolvinginstages.
NewwetprocessesareunderdevelopmentinwhichalsotheminoractinidesandsomeLLFPsare
separatedforlaterdestruction(incineration)indifferenttypesofreactors,includingfastreactorsand
acceleratordrivensystems.Othermethodsarealsobeingdevelopedinwhichplutoniumisnever
separatedinapureformbutalwaysmixedwithminoractinidesforproliferationresistance.Inalonger
time perspective different dry reprocessing technologies are also being developed, e.g. pyro
processing,whichcouldprovidebenefitsintermsofeconomics,sizeandfuelcycleflexibilitythrough
theirhigherradiationresistance.Severaldifferentlinesofdevelopmentarebeingconsideredand
testedonalaboratoryscale.Insomecasesthesteptowardsindustrialimplementationisfairlyshort,
whileotherswillrequiresubstantialworkbeforetheycanbeintroducedatanindustriallevel.The
followingsectiongivessomeexamplesofadvancedprocesses.
___________________________________________________________________________
5 INPRO = International Project on Innovative Nuclear Reactors and Fuel Cycles; GIF = Generation IV International
Forum
flexibility(adaptationstoincreasedburnup,MOXtreatment);
Page 5
C.1.
Wet processes developments
Forwetprocessestherearetwodifferentlinesofapproach:(i)advancedseparationofdifferent
componentsinthehighlevelliquidwaste(HLLW)generatedbythePUREXprocess(advanced
separation)or(ii)changingthechemistryinthefirstseparationstepsothatonlyuraniumisseparated,
while keeping plutonium, minor actinides and fission products in the waste solution for later
processing(e.g.UREX 6 ).
Advanced separation
Thepurposeoftheongoingdevelopmentworkonadvancedseparationmethodsistoremoveminor
actinidesandsomefissionproductsfromtheHLLWinordertoreducetheradiotoxicityandheatload
inthefinalhighlevelwaste.Theminoractinideswillbeincorporatedinreactorfuelfortransmutation
(nuclearincineration),whiletheseparatedfissionproductsareconditionedforlongtermstorageor
separatedisposal.
Theprocessestypicallyinvolvethefollowingsteps:
recoveringminoractinides(MA)andlanthanidefissionproducts
purifyingtheMAsfromthelanthanides
individuallyseparatingtheMAs
recoveringCsandSr
Severalprocessesusingdifferenttypesofextractantsandsolventshavebeenstudiedindifferent
countriesandtestedinhotfacilities.SomeexamplesarelistedinTable2.Eachprocessusesits
specificextractantandsolvent.Veryhighseparationefficiencieswillberequiredtoreducethelong
termradiotoxicityoftheremainingHLLWbyasignificantfactor.Inadditiontohighseparation
efficiencytheminimisationofsecondaryprocesswaste,e.g.byusingamidesinsteadofphosphorous
reagents,isalsoanimportantgoal.
Table2:Reviewofadvancedaqueouspartitioningmethods[Ref.1,6,7,8,9,10]
Process Purpose
Country Specialaspects
DIAMEX Extractionofminor
actinidesand
lanthanidesfrom
HLLW
France DiamideExtractionProcess
Solventbasedonamidesasalternateto
phosphorousreagent
Generatesminimumorganicwasteasthesolvent
istotallycombustible
___________________________________________________________________________
6 URanium EXtraction
352056460.009.png
Zgłoś jeśli naruszono regulamin