Development of Advanced Reprocessing Technologies purex1.pdf
(
426 KB
)
Pobierz
Development of Advanced Reprocessing Technologies - NTR2008 Supplement
Development of Advanced Reprocessing Technologies
A.
Introduction
Currentlyabout10500tHM(tonnesofheavymetal)ofspentfuelaredischargedannuallyfrom
nuclear power reactors worldwide. Although this spent fuel still contains substantial fissionable
material(uraniumandplutonium)thatcanbereprocessedandrecycledasfuel,only15%iscurrently
reprocessed.Formostofnuclearpower’shistory,reprocessingandrecyclingoftheseparatedUand
Puinfastreactorshasbeenthefavouredstrategyforthebackendofthefuelcycle.Whilemost
countrieshaveadopteda‘waitandsee’strategyonthismatter,somecountrieshavedecided,dueto
proliferationconcernsandalackofeconomicstimulus,toregardthespentfuelaswasteandpreferto
disposeofitafter3040years’storagewithoutreprocessing.Lately,however,insomeofthese
countriestherehasbeenaresurgenceofinterestinreprocessingandrecyclingaskeycomponentsof
developingfuturesustainablenuclearenergysystems[Ref.1,2].
Themainpurposeofreprocessingistobetterutilisenaturalresourcebyrecyclingtheremaining
uraniumandplutonium,thusreducingdemandsonfreshuraniumminingandmillingandensuringa
moresustainableandlongtermuseofnuclearenergy.Reprocessingandrecyclinginfastreactorshas
thepotentialtoreducetheuraniumdemandperkWhbyafactorof50–100.Reprocessingoffuelfrom
lightwaterreactorsandgascooledreactorsandrecyclingoftheseparatedplutoniumasmixedoxide
(MOX)fuelistodaycommerciallyavailable.
Table1:Compositionofspentfuelfromthermalreactors:associatedissuesandplausiblesolutions
Constituent
Composition in
percentage
Issue
Disposition path
Uranium
~ 95 - 96
An energy resource.
Separated uranium could be
recycled as fuel in reactors.
Plutonium
~ 1.0
An energy resource, but also the
major contributor to long term
radio-toxicity (and heat-load) of
the waste. Separated Pu
constitutes a major proliferation
concern.
Separated Pu could be
recycled in reactors as fuel.
Proliferation concerns could
be reduced by not separating
pure Pu.
Minor actinides
(MAs) primarily
Np, Am, and Cm
~ 0.1
Important contributors to long-
term radio-toxicity of the waste.
Proliferation concerns exist
concerning separated Np.
MAs can be burnt alone or in
combination with Pu in fast
reactors.
Stable or short-
lived FPs (fission
products)
~ 3 - 4
Some FPs such as Cs and Sr are
the primary contributors to the
short term radio-toxicity and heat
source in the waste. Other FPs,
e.g. noble metals, could become
valuable.
Storage of high level waste
(HLW) for a few hundred
years or separation of Cs and
Sr for separate disposal after a
few hundred years storage.
Separated Cs has industrial
applications.
Long-lived fission
products (LLFPs)
viz., Tc and I
~ 0.1
Contributors to the long term
radio-toxicity of the waste.
No industrial process to limit
the problem has been
developed.
Page 2
FigureIV1showshowtherelativeradiotoxicity
1
ofthedifferentcomponentsofspentnuclearfuel
variesovertime.Forthefirst100yearsafterspentfuelisdischarged,itsradiotoxicityisdetermined
bythefissionproducts.Itisthendeterminedbyplutonium.Iftheplutoniumisremoved,theminor
actinidesdeterminethelongtermradiotoxicity.Itshouldbenotedthatbothscalesarelogarithmic.
FIG. IV-1. Relative radio-toxicity of the different components in spent nuclear fuel from a light water
reactor irradiated to 41 MWd/kgU with respect to the radio-toxicity of the corresponding uranium
ore. [Ref. 3,4]
Incomparisonwithdirectdisposalofspentfuel,presentdayreprocessingalsoprovidessomepositive
effectsontheremainingradioactivewastethatneedsdisposal.Theseinclude:
•
Longtermradiotoxicityisreduced.Thisreduceslongtermconcernsfortherepository,which
couldsimplifytherepositorydesignandincreasepublic
acceptance.
•
Longtermheatproductionisreduced,whichincreasesthecapacityofarepository,asthe
packagingdensityinmostcasesisdeterminedbytheheatload.
Theseeffectscanbefurtherenhancedinadvancedreprocessingsystems,whereminoractinidesare
alsoseparatedwiththepurposeofburningthem,therebyfurtherreducingthelongtermradiotoxicity
andheatloadintheremainingwaste.Inaddition,somevaluablefissionproductmaterials,e.g.
caesiumandplatinumgroupmetals,couldbeextractedforindustrialuse.Heatreductionismainly
achievedbyremovingthecaesiumandstrontiumfollowedbyplutoniumandamericium.
Thevolumeofhighlevelwasteisreduced.
___________________________________________________________________________
1
Radio-toxicity is calculated by dividing the radioactivity (Ci) of a nuclide in the spent fuel by the maximum
permissible concentration (Ci/m
3
) of that radionuclide in drinking water.
•
Page 3
B.
PUREX – current industrial reprocessing technology
Allcurrentcommercialreprocessingplantsusethe PUREX
2
process.Itwasdevelopedforcivil
applicationsduringthe1960s,followingexperiencegainedfrommilitaryprogrammes.
InthePUREXprocess(whichissummarizedinFig.IV2),thespentfuelisfirstchoppedintosmall
piecesandthendissolvedinnitricacidandsubjectedtoasolventextractionprocessusingtrinbutyl
phosphate(TBP).UraniumandplutoniumareselectivelytakenupintheTBPphaseresultingingood
separationfromtherestofthefissionproductsandminoractinides
3
,whichareretainedintheinitial
acidmedium.TheUandPuarethenseparatedinmultistageextractioncyclesandpurified.The
presentstateoftheartinPUREXreprocessingprovidesa99.9%separationofUandPu.Insome
variantsofthePUREXprocessthePuiscoprecipitatedwithuraniumtoavoidtheseparationofpure
plutonium.ThisisthecaseintheJapanesereprocessingplantatRokkasho.Thewastestream(the
liquidhighlevelwaste)thatcontainsfissionproducts,minoractinidesandactivationproducts,is
processedandvitrified,i.e.mixedwithglassmaterialtoformaborosilicateglass,andencapsulatedin
asteelcontainer.
Spent Fuel Storage
Off-gas Treatment
Mechanical
Disassembly
Hulls (HLW)
High Level Waste
Acid recovery
Acid dissolution
Solvent Extraction
Solvent Treatment
Fission Product
Consolidation (HLLW)
High Level Liquid Waste
Solvent Extraction
& Partitioning
Uranium Oxide
Conversion
Plutonium Oxide
Conversion
Reprocessed
Uranium
Plutonium
FIG. IV-2. Key steps in the PUREX process.
InaPUREXreprocessingfacilitythespentfuelisthusseparatedintoitsfourcomponents:uranium,
plutonium,highlevelwastecontainingfissionproductsandothertransuranicelements,andmetallic
wastefromthefuelrodsandassemblies.
ThePUREXtechnologyisactivelyusedonalargescaleinFrance,Japan,India,Russia,andthe
UnitedKingdom.Itisusedtoreprocessuraniumandmixedoxide(MOX)fuelfromdifferenttypesof
reactors (LWR, PHWR, GCR and LMFR
4
) and also fuel with different chemical forms and
enrichments, e.g. from research reactors. Around 90000tHM have been reprocessed in civilian
___________________________________________________________________________
2
Plutonium-Uranium Extraction (PUREX)
3
The main minor actinides are neptunium, americium and curium
4
LWR = light water reactor, PHWR = pressurized heavy water reactor, GCR = gas cooled reactor and LMFR = liquid
metal cooled fast reactor.
Page 4
reprocessing facilities. The current annual industrial reprocessing capacity is around 4600 tHM
globally,anditisexpectedthatanadditional2000tonnesmightbeaddedinthenext10years.
C.
Developments in reprocessing technologies
The current generation of reprocessing plants has been continuously improved in regard to the
following[Ref.5]:
i)
ii)
reductionofeffluentdischargesandimpactsontheenvironment;
iii)
reduction of occupational exposure (e.g. during preventive maintenance and
inspections);
iv)
reductionsinwastevolumes(ofbothHLWandintermediatelevelwaste(ILW));
v)
simplificationoftheprocess(e.g.throughreducingthenumberofcyclesneeded);
vi)
increasedsafetythroughreducedcriticalityhazards,andbetterproliferationresistance
byrealtimeaccountingofnuclearmaterials.
Neverthelessreprocessingsystemsstillhavetoaddresssomemorechallengingconcerns,namely:
i)
proliferationissuesassociatedwithproducingseparatedplutonium;
ii)
issuesassociatedwithhighlevelwaste,owingtothepresenceofminoractinidesand
longlivedfissionproducts(LLFP);
iii)
economicsandcosts;and
iv)
theprocessingoftransuranicrichfuelsthatarebeingdevelopedforfutureadvanced
nuclearreactors.
Muchoftheongoingdevelopmentworkforreprocessingtechnologiesdealswiththeseissues.The
economiccompetitivenessofreprocessingandrecyclingoffissilematerialsdependsonthepriceof
naturaluraniumandonthepossiblegainsfromreduceddemandsforrepositories.
Collaborative international efforts are underway, including INPRO and GIF
5
, for developing
innovativereactorsandfuelcyclesthatarecompetitiveandsafe,withsimplifiedproceduresfor
managing radioactive waste and with features to increase the proliferation resistance of nuclear
materials.Similartotheevolutionofinnovativenuclearreactordevelopment,reprocessingtechnology
isevolvinginstages.
NewwetprocessesareunderdevelopmentinwhichalsotheminoractinidesandsomeLLFPsare
separatedforlaterdestruction(incineration)indifferenttypesofreactors,includingfastreactorsand
acceleratordrivensystems.Othermethodsarealsobeingdevelopedinwhichplutoniumisnever
separatedinapureformbutalwaysmixedwithminoractinidesforproliferationresistance.Inalonger
time perspective different dry reprocessing technologies are also being developed, e.g. pyro
processing,whichcouldprovidebenefitsintermsofeconomics,sizeandfuelcycleflexibilitythrough
theirhigherradiationresistance.Severaldifferentlinesofdevelopmentarebeingconsideredand
testedonalaboratoryscale.Insomecasesthesteptowardsindustrialimplementationisfairlyshort,
whileotherswillrequiresubstantialworkbeforetheycanbeintroducedatanindustriallevel.The
followingsectiongivessomeexamplesofadvancedprocesses.
___________________________________________________________________________
5
INPRO = International Project on Innovative Nuclear Reactors and Fuel Cycles; GIF = Generation IV International
Forum
flexibility(adaptationstoincreasedburnup,MOXtreatment);
Page 5
C.1.
Wet processes developments
Forwetprocessestherearetwodifferentlinesofapproach:(i)advancedseparationofdifferent
componentsinthehighlevelliquidwaste(HLLW)generatedbythePUREXprocess(advanced
separation)or(ii)changingthechemistryinthefirstseparationstepsothatonlyuraniumisseparated,
while keeping plutonium, minor actinides and fission products in the waste solution for later
processing(e.g.UREX
6
).
Advanced separation
Thepurposeoftheongoingdevelopmentworkonadvancedseparationmethodsistoremoveminor
actinidesandsomefissionproductsfromtheHLLWinordertoreducetheradiotoxicityandheatload
inthefinalhighlevelwaste.Theminoractinideswillbeincorporatedinreactorfuelfortransmutation
(nuclearincineration),whiletheseparatedfissionproductsareconditionedforlongtermstorageor
separatedisposal.
Theprocessestypicallyinvolvethefollowingsteps:
•
recoveringminoractinides(MA)andlanthanidefissionproducts
•
purifyingtheMAsfromthelanthanides
•
individuallyseparatingtheMAs
•
recoveringCsandSr
Severalprocessesusingdifferenttypesofextractantsandsolventshavebeenstudiedindifferent
countriesandtestedinhotfacilities.SomeexamplesarelistedinTable2.Eachprocessusesits
specificextractantandsolvent.Veryhighseparationefficiencieswillberequiredtoreducethelong
termradiotoxicityoftheremainingHLLWbyasignificantfactor.Inadditiontohighseparation
efficiencytheminimisationofsecondaryprocesswaste,e.g.byusingamidesinsteadofphosphorous
reagents,isalsoanimportantgoal.
Table2:Reviewofadvancedaqueouspartitioningmethods[Ref.1,6,7,8,9,10]
Process Purpose
Country Specialaspects
DIAMEX Extractionofminor
actinidesand
lanthanidesfrom
HLLW
France DiamideExtractionProcess
Solventbasedonamidesasalternateto
phosphorousreagent
Generatesminimumorganicwasteasthesolvent
istotallycombustible
___________________________________________________________________________
6
URanium EXtraction
Plik z chomika:
WMatrixie
Inne pliki z tego folderu:
Future of nuclear power mit.pdf
(29802 KB)
Development of Knowledge Portals for Nuclear Power Plants.pdf
(3474 KB)
Geological disposal of radioactive waste Technological implications for retrievability.pdf
(1900 KB)
Irradiation to Ensure the Safety and Quality of Prepared Meals.pdf
(3146 KB)
Advances in Treatment of Wastes from-Bernard.pdf
(543 KB)
Inne foldery tego chomika:
A Teachers guide to Nuclear phisics
Atom Programs
Experimental Methods And Colliders
Industrial Waste Treatment Handbook
Nuclear Blasts Pictures
Zgłoś jeśli
naruszono regulamin