HIP6003.PDF

(208 KB) Pobierz
fn4274
HIP6003
Data Sheet
March 2000
File Number 4274.2
Buck Pulse-Width Modulator (PWM)
Controller and Output Voltage Monitor
The HIP6003 provides complete control and protection for a
DC-DC converter optimized for high-performance
microprocessor applications. It is designed to drive an
N-Channel MOSFET in a standard buck topology. The
HIP6003 integrates all of the control, output adjustment,
monitoring and protection functions into a single package.
Features
• Drives N-Channel MOSFET
• Operates From +5V or +12V Input
• Simple Single-Loop Control Design
- Voltage-Mode PWM Control
• Fast Transient Response
- High-Bandwidth Error Amplifier
- Full 0% to 100% Duty Ratio
The output voltage of the converter is easily adjusted and
precisely regulated. The HIP6003 includes a 4-Input
Digital-to-Analog Converter (DAC) that adjusts the output
voltage from 2.0VDC to 3.5VDC in 0.1V increments. The
precision reference and voltage-mode regulator hold the
selected output voltage to within ±
• Excellent Output Voltage Regulation
-
1% over temperature and
• 4-Bit Digital-to-Analog Output Voltage Selection
- Wide Range . . . . . . . . . . . . . . . . . . .2.0VDC to 3.5VDC
- 0.1V Binary Steps
line voltage variations.
The HIP6003 provides simple, single feedback loop, voltage-
mode control with fast transient response. It includes a
200kHz free-running triangle-wave oscillator that is
adjustable from below 50kHz to over 1MHz. The error
amplifier features a 15MHz gain-bandwidth product and
6V/ms slew rate which enables high converter bandwidth for
fast transient performance. The resulting PWM duty ratio
ranges from 0% to 100%.
• Power-Good Output Voltage Monitor
• Over-Voltage and Over-Current Fault Monitors
- Does Not Require Extra Current Sensing Element
- Uses MOSFETs r DS(ON)
• Small Converter Size
- Constant Frequency Operation
- 200kHz Free-Running Oscillator Programmable from
50kHz to over 1MHz
The HIP6003 monitors the output voltage with a window
comparator that tracks the DAC output and issues a Power
Good signal when the output is within ± 10%. The HIP6003
protects against over-current conditions by inhibiting PWM
operation. Built-in over-voltage protection triggers an
external SCR to crowbar the input supply. The HIP6003
monitors the current by using the r DS(ON) of the upper
MOSFET which eliminates the need for a current sensing
resistor.
Applications
Power Supply for Pentium®, Pentium Pro, PowerPC™ and
Alpha™ Microprocessors
High-Power 5V to 3.xV DC-DC Regulators
Low-Voltage Distributed Power Supplies
Pinout
Ordering Information
HIP6003
(SOIC)
TOP VIEW
PART NUMBER
TEMP.
RANGE ( o C)
PACKAGE
PKG.
NO.
HIP6003CB
0 to 70
16 Ld SOIC
M16.15
OCSET
SS
VID0
VID1
VID2
VID3
1
2
3
4
5
16
VSEN
15
RT/OVP
14
VCC
BOOT
UGATE
PHASE
PGOOD
GND
13
12
11
10
6
COMP
7
FB
8
9
Alpha Micro™ is a trademark of Digital Computer Equipment Corporation.
Pentium® is a registered trademark of Intel Corporation.
PowerPC™ is a registered trademark of IBM.
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000
± 1% Over Line Voltage and Temperature
11120682.050.png 11120682.061.png 11120682.071.png 11120682.072.png
 
HIP6003
Typical Application
+12V
VCC
V IN = +5V OR +12V
PGOOD
OCSET
MONITOR AND
PROTECTION
SS
RT/OVP
BOOT
OSC
UGATE
VID0
VID1
VID2
VID3
HIP6003
PHASE
D/A
+V O UT
-
+
-
+
FB
COMP
VSEN
GND
Block Diagram
VCC
VSEN
110%
POWER-ON
RESET (POR)
-
PGOOD
90%
-
115%
OVER-
VOLTAGE
10
A
-
+
-
SOFT-
START
SS
OCSET
OVER-
CURRENT
BOOT
UGATE
REFERENCE
200 µ
A
4V
PHASE
VID0
VID1
VID2
VID3
D/A
CONVERTER
(DAC)
DACOUT
PWM
COMPARATOR
GATE
CONTROL
LOGIC
+
-
INHIBIT
-
PWM
ERROR
AMP
FB
GND
COMP
OSCILLATOR
RT/OVP
2
11120682.001.png 11120682.002.png 11120682.003.png 11120682.004.png 11120682.005.png 11120682.006.png 11120682.007.png 11120682.008.png 11120682.009.png 11120682.010.png 11120682.011.png 11120682.012.png 11120682.013.png 11120682.014.png 11120682.015.png 11120682.016.png 11120682.017.png 11120682.018.png 11120682.019.png 11120682.020.png 11120682.021.png 11120682.022.png 11120682.023.png 11120682.024.png 11120682.025.png 11120682.026.png 11120682.027.png 11120682.028.png 11120682.029.png 11120682.030.png 11120682.031.png 11120682.032.png 11120682.033.png 11120682.034.png 11120682.035.png 11120682.036.png 11120682.037.png 11120682.038.png 11120682.039.png 11120682.040.png 11120682.041.png 11120682.042.png 11120682.043.png 11120682.044.png 11120682.045.png 11120682.046.png 11120682.047.png 11120682.048.png 11120682.049.png 11120682.051.png 11120682.052.png 11120682.053.png 11120682.054.png
HIP6003
Absolute Maximum Ratings
Thermal Information
Supply Voltage, V CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15.0V
Boot Voltage, V BOOT - V PHASE . . . . . . . . . . . . . . . . . . . . . . . +15.0V
Input, Output or I/O Voltage . . . . . . . . . . . GND -0.3V to VCC + 0.3V
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 2
θ JA ( o C/W)
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Maximum Junction Temperature (Plastic Package) . . . . . . . .150 o C
Maximum Storage Temperature Range . . . . . . . . . . -65 o C to 150 o C
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 o C
(SOIC - Lead Tips Only)
Operating Conditions
Supply Voltage, V CC . . . . . . . . . . . . . . . . . . . . . . . . . . . +12V ± 10%
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . 0 o C to 70 o C
Junction Temperature Range . . . . . . . . . . . . . . . . . . . . 0 o C to 125 o C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
JA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief 379 for details.
Electrical Specifications Recommended Operating Conditions, unless otherwise noted.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
VCC SUPPLY CURRENT
Nominal Supply
I CC
UGATE Open
-
5
-
mA
POWER-ON RESET
Rising VCC Threshold
V OCSET = 4.5V
-
-
10.4
V
Falling VCC Threshold
V OCSET = 4.5V
8.2
-
-
V
Rising V OCSET Threshold
-
1.26
-
V
OSCILLATOR
Free Running Frequency
RT = OPEN
185
200
215
kHz
Total Variation
6k
< RT to GND < 200k
-15
-
+15
%
Ramp Amplitude
V OSC
RT = OPEN
-
1.9
-
V P-P
REFERENCE AND DAC
DACOUT Voltage Accuracy
-1.0
-
+1.0
%
ERROR AMPLIFIER
DC Gain
-
88
-
dB
Gain-Bandwidth Product
GBW
-
15
-
MHz
Slew Rate
SR
COMP = 10pF
-
6
-
V/
s
GATE DRIVER
Upper Gate Source
I UGATE
V BOOT - V PHASE = 12V, V UGATE = 6V
350
500
-
mA
Upper Gate Sink
R UGATE
-
5.5
10
PROTECTION
Over-Voltage Trip (V SEN /DACOUT)
-
115
120
%
OCSET Current Source
I OCSET
V OCSET = 4.5VDC
170
200
230
A
OVP Sourcing Current
I OVP
V SEN = 5.5V; V OVP = 0V
60
-
-
mA
Soft Start Current
I SS
-
10
-
A
POWER GOOD
Upper Threshold (V SEN /DACOUT)
V SEN Rising
106
-
111
%
Lower Threshold (V SEN /DACOUT)
V SEN Falling
89
-
94
%
Hysteresis (V SEN /DACOUT)
Upper and Lower Threshold
-
2
-
%
PGOOD Voltage Low
V PGOOD I PGOOD = -5mA
-
0.5
-
V
3
Thermal Resistance (Typical, Note 1)
NOTE:
1.
11120682.055.png 11120682.056.png 11120682.057.png
HIP6003
Typical Performance Curves
40
35
1000
R T PULLUP
TO +12V
30
C UGATE = 3300pF
R T PULLDOWN
TO V SS
25
100
20
C UGATE = 1000pF
15
10
10
5
C UGATE = 10pF
10
100
1000
0
100 200 300 400 500 600 700 800 900 1000
SWITCHING FREQUENCY (kHz)
SWITCHING FREQUENCY (kHz)
FIGURE 1. R T RESISTANCE vs FREQUENCY
FIGURE 2. BIAS SUPPLY CURRENT vs FREQUENCY
Functional Pin Description
OCSET
SS
VID0
VID1
VID2
VID3
1
2
3
4
5
16
VSEN
COMP (Pin 7) and FB (Pin 8)
COMP and FB are the available external pins of the error
amplifier. The FB pin is the inverting input of the error
amplifier and the COMP pin is the error amplifier output.
These pins are used to compensate the voltage-control
feedback loop of the converter.
15
RT/OVP
14
VCC
BOOT
UGATE
PHASE
PGOOD
GND
13
12
11
10
6
GND (Pin 9)
Signal ground for the IC. All voltage levels are measured with
respect to this pin.
COMP
7
FB
8
9
OCSET (Pin 1)
Connect a resistor (R OCSET ) from this pin to the drain of the
upper MOSFET. R OCSET , an internal 200 µ A current source
(I OCS ), and the upper MOSFET on-resistance. (r DS(ON) ) set
the converter over-current (OC) trip point according to the
following equation:
PGOOD (Pin 10)
PGOOD is an open collector output used to indicate the
status of the converter output voltage. This pin is pulled low
when the converter output is not within ±
10 %
of the
DACOUT reference voltage.
PHASE (Pin 11)
Connect the PHASE pin to the upper MOSFET source. This
pin is used to monitor the voltage drop across the MOSFET
for over-current protection. This pin also provides the return
path for the upper gate drive.
I PEAK =
--------------------------------------------
r DS ON
R OCSET
An over-current trip cycles the soft-start function.
UGATE (Pin 12)
Connect UGATE to the upper MOSFET gate. This pin
provides the gate drive for the upper MOSFET.
SS (Pin 2)
Connect a capacitor from this pin to ground. This capacitor,
along with an internal 10 µ A current source, sets the soft-
start interval of the converter.
BOOT (Pin 13)
This pin provides bias voltage to the upper MOSFET driver.
A bootstrap circuit may be used to create a BOOT voltage
suitable to drive a standard N-Channel MOSFET.
VID0-3 (Pins 3-6)
VID0-3 are the input pins to the 4-bit DAC. The states of
these four pins program the internal voltage reference
(DACOUT). The level of DACOUT sets the converter output
voltage. It also sets the PGOOD and OVP thresholds. Table
1 specifies DACOUT for the 16 combinations of DAC inputs.
VCC (Pin 14)
Provide a 12V bias supply for the chip to this pin.
4
I OCS
11120682.058.png 11120682.059.png
HIP6003
RT/OVP (Pin 15)
This pin is multiplexed, providing two functions. The first
function is oscillator switching frequency adjustment. By
placing a resistor (R T ) from this pin to GND, the nominal
200KHz switching frequency is increased according to the
following equation:
SS voltage exceeds the DACOUT voltage and the output
voltage is in regulation. This method provides a rapid and
controlled output voltage rise. The PGOOD signal toggles
‘high’ when the output voltage (VSEN pin) is within ± 5% of
DACOUT. The 2% hysteresis built into the power good
comparators prevents PGOOD oscillation due to nominal
output voltage ripple.
510 6
F S
200kHz
+
---------------------
R T
to GND
Ω( )
Conversely, connecting a pull-up resistor (R T ) from this pin
to V CC reduces the switching frequency according to the
following equation:
PGOOD
(2V/DIV)
0V
F S
200kHz
+
410 7
R T
to 12V
SOFT-START
(1V/DIV)
Ω( )
The second function for this pin is to drive an external SCR
in the event of an overvoltage condition.
VOLTAGE
0V
(1V/DIV)
VSEN (Pin 16)
This pin is connected to the converters output voltage. The
PGOOD and OVP comparator circuits use this signal to
report output voltage status and for overvoltage protection.
0V
t 1
t 2
t 3
TIME (5ms/DIV)
FIGURE 3. SOFT START INTERVAL
Functional Description
Initialization
The HIP6003 automatically initializes upon receipt of power.
Special sequencing of the input supplies is not necessary.
The Power-On Reset (POR) function continually monitors
the input supply voltages. The POR monitors the bias
voltage at the VCC pin and the input voltage (V IN ) on the
OCSET pin. The level on OCSET is equal to V IN less a fixed
voltage drop (see over-current protection). The POR function
initiates soft start operation after both input supply voltages
exceed their POR thresholds. For operation with a single
+12V power source, V IN and V CC are equivalent and the
+12V power source must exceed the rising V CC threshold
before POR initiates operation.
Over-Current Protection
The over-current function protects the converter from a
shorted output by using the upper MOSFETs on-resistance,
r DS(ON) to monitor the current. This method enhances the
converter’s efficiency and reduces cost by eliminating a
current sensing resistor.
The over-current function cycles the soft-start function in a
hiccup mode to provide fault protection. A resistor (R OCSET )
programs the over-current trip level. An internal 200 µ A current
sink develops a voltage across R OCSET that is referenced to
V IN . When the voltage across the upper MOSFET (also
referenced to V IN ) exceeds the voltage across R OCSET , the
over-current function initiates a soft-start sequence. The soft-
start function discharges C SS with a 10 µ A current sink and
inhibits PWM operation. The soft-start function recharges
C SS , and PWM operation resumes with the error amplifier
clamped to the SS voltage. Should an overload occur while
recharging C SS , the soft start function inhibits PWM operation
while fully charging C SS to 4V to complete its cycle. Figure 4
shows this operation with an overload condition. Note that the
inductor current increases to over 15A during the C SS
charging interval and causes an over-current trip. The
A current source charges an external capacitor
(C SS ) on the SS pin to 4V. Soft start clamps the error
amplifier output (COMP pin) and reference input (+ terminal
of error amp) to the SS pin voltage. Figure 3 shows the soft
start interval with C SS = 0.1
F. Initially the clamp on the error
amplifier (COMP pin) controls the converter’s output voltage.
At t1 in Figure 3, the SS voltage reaches the valley of the
oscillator’s triangle wave. The oscillator’s triangular
waveform is compared to the ramping error amplifier voltage.
This generates PHASE pulses of increasing width that
charge the output capacitor(s). This interval of increasing
pulse width continues to t2. With sufficient output voltage,
the clamp on the reference input controls the output voltage.
This is the interval between t2 and t3 in Figure 3. At t3 the
5
R T
k
R T
---------------------
k
OUTPUT
Soft Start
The POR function initiates the soft start sequence. An
internal 10
11120682.060.png 11120682.062.png 11120682.063.png 11120682.064.png 11120682.065.png 11120682.066.png 11120682.067.png 11120682.068.png 11120682.069.png 11120682.070.png
Zgłoś jeśli naruszono regulamin