MATLAB_cw_01_08_Tryb_bezposr(1).pdf
(
326 KB
)
Pobierz
Microsoft Word - Matlab_cw_01__08.doc
Matlab_cw_01__08.doc
HM
str. 5
M A T L A B
WST
P
wiadomo, e komputer jest „urzdzeniem” do prowadzenia
oblicze, nie jest wród jego uytkowników powszechna. Zadziwiajcy jest
fakt, e wiele osób majcych na co dzie dostp do komputera, nie potrafi
przy jego pomocy przeprowadzi adnych, nawet najprostszych oblicze.
Celem nadrzdnym niniejszego opracowania jest wypełnienie luki
w tej „zbiorowej niewiadomoci”. Poniewa zawarto zeszytu przeznaczona
jest dla studentów, nie przedstawiam moliwoci obliczeniowych, jakie tkwi
w samym systemie operacyjnym, czy w pakietach wspomagajcych prac
biura. Na wyranie zgłoszone zapotrzebowanie kolegów, którzy prowadz
zajcia na starszych latach studiów, przedstawiam w skrócie i poprzez
wybrane zagadnienia, podstawowe moliwoci pakietu MATLAB.
Poniewa pracujemy i studiujemy na Wydziale Mechanicznym
Politechniki Szczeciskiej, wikszo zada oparta jest o problemy zrozumiałe
(mam nadziej) dla tzw. mechaników. Przyjto załoenie, e zajcia w oparciu
o niniejsze opracowanie, prowadzone s na niskich semestrach studiów. Opis
zagadnie, przykłady i zadania do samodzielnego rozwizania oscyluj wokół
wiedzy, któr student powinien posi na 1 lub 2-gim semestrze.
MATLAB jest przyjaznym rodowiskiem integrujcym metody
numeryczne, prezentacj graficzn i jzyk programowania. Celem niniejszego
opracowania nie jest zaprezentowanie wszystkich elementów tego pakietu,
a raczej przedstawienie podstawowych wiadomoci wystarczajcych do jego
efektywnego wykorzystywania. Omieleni łatwoci podstawowych działa,
powinnimy nie obawia si signicia w razie potrzeby, do bardziej
zaawansowanych moliwoci MATLABA. Moliwoci te s ogromne i jeli kto
zachcony wiczeniami z tego zeszytu, skorzysta z nich w przyszłoci, to cel
niniejszego opracowania zostanie osignity.
Opracowujc prezentacj zawartoci merytorycznej poszczególnych
wicze, przyjto załoenie, e podaj one w lad za poprzedzajcym je
wykładem. Std krótka, czsto „sucha” cz wprowadzajca do zada.
Autor
str. 6
HM
Matlab_cw_01__08.doc
M A T L A B
WICZENIE 1
-
Podstawy interfejsu Matlaba
Wykonaj nast
puj
ce polecenia
:
1. Uruchom
Matlaba
. Jeste teraz w rodowisku Matlaba. Masz przed
sob tzw.
interfejs
Matlaba
, którego moliwoci bdziesz
wykorzystywał do prowadzenia oblicze w trybie bezporednim, a
póniej do tworzenia własnych programów w jzyku Matlaba.
2. Rozcignij okno Matlaba tak, by zajmowało cały ekran monitora.
3. Przestrze robocza Matlaba podzielona jest na kilka okienek. Zmie
wymiary tych okienek tak, by:
·
okienko
Command Window
(okno polece) zajmowało 75%
szerokoci ekranu,
·
okienko
Command History
(historia polece) zajmowało 30%
wysokoci ekranu.
4. Wykorzystujc przycisk
strzałki w gór
na pasku tytułowym
okienka
Command History
spowoduj, eby okienko przestało by
„przestrzennie” zwizane z pozostałymi okienkami i przesu je w prawy
dolny róg okna Matlaba.
5. Sprawd na dole ekranu zawarto
paska zada
systemu
Windows
.
6. Wstaw „do szeregu” okienko
Command History
uywajc przycisku
ekranowego
strzałki w dół
z paska menu tego okienka.
7. Zamknij okienko
Command History
w tradycyjny sposób.
8. Spowoduj, by w obszarze roboczym Matlaba widoczne były tylko dwa
okienka:
Command Window
oraz
Workspace
(przestrze robocza)
.
Wykorzystaj do tego znane ju operacje na okienkach i zakładk
Workspace.
9. Wykorzystujc opcje menu
Desktop / Desktop Layout / Default
ustaw
przestrze robocz Matlaba tak, by ekran przyjł ustawienia domylne
(w starszych wersjach Matlaba w menu, zamiast opcji
Desktop
jest
opcja
View
).
WICZENIE 2
–
Praca w trybie bezpo
rednim
W oknie polece
Command Window
wydaje si komendy. O gotowoci
Matlaba do przyjcia komendy (polecenia) wiadczy widoczny w wierszu
polece
znak zach
ty >>
. Wykonanie komendy nastpuje po naciniciu
klawisza
[Enter].
Jeli podamy polecenie, bez okrelenia w jakiej zmiennej
przechowany ma by jego wynik, to Matlab umieci go w zmiennej o nazwie
ans
.
Wykonaj nastpujce zadanie bez uywania własnych zmiennych, tj. troch
podobnie jak w tradycyjnym kalkulatorze. Nie wolno take zapisywa wyników
porednich w notatniku.
Zadanie 1
Oblicz pole powierzchni figury
(rysunek) jaka pozostanie z koła
o promieniu 10, po wyciciu trójkta równoramiennego wpisanego w to
koło. Trójkt ma jeden bok oparty na rednicy koła. Znajd te
pole
powierzchni odcinka koła
oznaczonego symbolem
A
.
Uwaga:
odwołuj si
do wyniku z poprzedniego działania pami
taj
c,
e
jest on zawarty w zmiennej
ans
.
Matlab_cw_01__08.doc
HM
str. 7
M A T L A B
wyniki:
214,16; pole odcinka A=28,54
A
Przekonałe si, e „kalkulatorowy”
sposób działania przy obliczeniach
cho troch złoonych, jest bardzo
niewygodny. Od tej pory, prowadzc
obliczenia bdziesz najczciej
stosował zmienne pomocnicze.
10
Nazwa zmiennej
musi zaczyna si od litery i moe składa si z dowolnej
liczby liter, cyfr i znaków podkrelenia, przy czym Matlab uwzgldnia
tylko 31
pierwszych znaków
nazwy.
Rozró
niane s
du
e i małe litery.
Nie jest
wymagane deklarowanie zmiennych, ani okrelanie ich typu (rozmiaru).
Zwró uwag, e:
·
jeli obliczenia maj by wykonane, ale nie interesuje nas wynik
polecenia, to naley na kocu polecenia umieci znak rednika [
;
] .
·
jeli polecenie nie mieci si w jednym wierszu, to koczymy wiersz
trzema kropkami
i kontynuujemy zapis polecenia w wierszu
nastpnym.
·
jeli w jednym wierszu chcemy napisa kilka polece, to moemy:
o
oddzieli je rednikami – jeli nie chcemy oglda wyników,
o
oddzieli je przecinkami – jeli chcemy widzie wyniki.
·
znakiem oddzielajcym cz ułamkow liczby od czci całkowitej jest
kropka.
Wykonaj zadanie stosujc zapisywanie wyników porednich do własnych
(tj. wymylonych przez siebie) zmiennych.
Zadanie 2
a) Wykonaj obliczenia wg treci zadania 1 (z pominiciem uwagi).
Zastosuj nastpujce (lub podobne) nazwy zmiennych:
·
promien
·
pole_kola
·
srednica
·
podstawa
·
wysokosc
·
pole_trojkata
·
pole_wynikowe
·
polowa_kola
·
pole_odcinka_A
b) Wykonaj te same obliczenia w taki sposób, by na ekranie uzyska
tylko
podgld
wyników
kocowych
(
pole_wynikowe
,
pole_odcinka_A
).
str. 8
HM
Matlab_cw_01__08.doc
M A T L A B
Sprawdzenie wyników porednich (np. gdy wyniku kocowego nie darzymy
zaufaniem) mona wykona po obliczeniach, wpisujc nazw zmiennej
przechowujcej wynik i naciskajc klawisz
[Enter].
Przydatne w tym działaniu
s okienka
Command History
(gdzie moemy przeledzi cig wydanych
polece) oraz
Workspace
(pokazujce zagospodarowanie pamici w
przestrzeni roboczej).
Zadanie 3
Oblicz wartoci sił reakcji (R1 i R2) w podporach belki przedstawionej na
rysunku (mechanika, równania statyki).
Uwaga, powiniene uy funkcji:
sin(), cos()
(k
t w radianach),
pierwiastek kwadratowy:
sqrt(),
operatora potgowania:
^
(np. z
^
2 ).
y
P1=532
=60
o
P3=320
R1=?
x
P2=270
R2=?
a=0,7
b=1,5
c=0,18e1
Wyniki:
R1
x
= -266,00;
R1
y
= 258,60;
R1= 370,98
R2
y
= 252,13
WICZENIE 3
–
Macierze – tworzenie - cz
1
Podstawowym typem zmiennej w Matlabie jest
macierz
. Mówic o wymiarze
macierzy zawsze najpierw okrelamy
liczb
wierszy
, a potem
liczb
kolumn
.
„Z punktu widzenia Matlaba” szczególnymi odmianami macierzy s:
·
skalar
– macierz o wymiarze
1 x 1
,
·
wektor wierszowy
– macierz o wymiarze
1 x n
(jeden wiersz),
·
wektor kolumnowy
- macierz o wymiarze
n x 1
(jedna kolumna).
Przy definiowaniu macierzy trzeba przestrzega nastpujcych reguł:
·
lista wartoci elementów musi by ujta w nawiasy kwadratowe
[ ]
,
·
wartoci elementów macierzy wpisuje si wierszami, oddzielajc je
spacj lub przecinkiem,
·
wiersze koczymy znakiem rednika
;
lub naciskajc klawisz
[Enter].
Liczby całkowite i rzeczywiste
zapisuje si w Matlabie w jednej z dwóch
postaci:
·
stałopozycyjnej
:
123000, -4234.34,
+0.0453 ;
·
zmiennopozycyjnej
:
123e3, -0.423434E4, +453e-4 .
Liczby zespolone
zapisuje si z uyciem znaku „
i
” lub „
j
” :
123 + 34i
321 – 43j
Sprawne tworzenie macierzy jest podstawow
umiej
tno
ci
jak
trzeba
posi
, by efektywnie działa
w Matlabie.
Matlab_cw_01__08.doc
HM
str. 9
M A T L A B
Zadanie 4
a) Utwórz macierze
A
i
B
. Pomnó je, wynik podajc w macierzy
C
:
Ç
1
3
5
×
Ç
11
12
×
È
Ø
È
Ø
A
=
2
4
7
B
=
21
22
È
Ø
È
Ø
È
Ø
È
Ø
-
3
3
6
-
31
-
32
É
Ù
É
Ù
wynik:
C
= -81 -82
-111 -112
-156 -162
b) Zmie kolejno macierzy w mnoeniu i sprawd rezultat.
Macierze mona składa z podmacierzy, przestrzegajc dokładnie takich
samych zasad, jak przy przybudowaniu macierzy z liczb (patrz wyej). Trzeba
przy tym kontrolowa wymiary macierzy. Nie moe w wyniku takiego składania
doj do „braków” elementów w wierszach lub kolumnach.
Zadanie 5
Utwórz macierze składowe:
A
– wektor wierszowy o 3 elementach,
B
– macierz o wymiarze 4x3,
C
– wektor kolumnowy o 3 elementach.
a) zbuduj z nich kilka macierzy
D
(
D1, D2
, itd.)
,
b) zbuduj z nich kilka macierzy
E
, w taki sposób, eby kada z macierzy
składowych wprowadziła elementy 10 razy wiksze lub 10 razy
mniejsze od wartoci elementów własnych.
c) zbuduj z nich, wpisujc w razie potrzeby dodatkowe liczby oraz
wykorzystujc moliwo zagniedania nawiasów kwadratowych,
kilka macierzy
F
o wymiarze:
F1
- 5
x
4,
F2
- 5
x
5,
F3
- 6
x
5,
F4
- 6
x
6.
Budowanie macierzy z u
yciem dwukropka
polega na składaniu w macierz
wygenerowanych wektorów wierszowych, przez okrelenie dla kadego z
nich:
·
minimum
i
maksimum,
według schematu –
min : max
– gdy kolejne
elementy stanowi arytmetyczny cig liczb całkowitych z rónic
równ 1,
·
minimum, przyrostu
i
maksimum
, wg schematu –
min : krok : max
–
gdy cig arytmetyczny ma dowoln rónic (niecałkowit lub ujemn).
Przykładow macierz o nazwie
dwukropek
, wygenerowan z uyciem
dwukropka pokazuje rysunek (zrzut fragmentu okienka
Command Window
).
????
Plik z chomika:
mariuszlew
Inne pliki z tego folderu:
algorytmy_grupowania(1).pdf
(54 KB)
au.rar
(1479 KB)
ETI30z.zip
(5 KB)
grupowanie_danych.pdf
(40 KB)
grupowanie_danych.ppt
(367 KB)
Inne foldery tego chomika:
3D Album
Adobe
angielski
Boris Blu
I rok
Zgłoś jeśli
naruszono regulamin