Korozja 2.doc

(29 KB) Pobierz

Ochrona metali przed korozją.

Ze względu na ogromne straty, jakie ponosi gospodarka wskutek korozji, opracowano wiele metod zapobiegania a przynajmniej hamowania tego niepożądanego zjawiska. Do najważniejszych metod ochrony antykorozyjnej można zaliczyć:

elektrochemiczną ochronę katodową i protektorową

metaliczne i niemetaliczne powłoki ochronne

dyfuzyjne ulepszanie powierzchni metali

stosowanie inhibitorów



Ochrona katodowa polega na podłączeniu do elementów konstrukcji narażonych na

korozję ujemnego bieguna źródła prądu stałego o niewielkim napięciu (1-2 V). Anodą może być złom żelazny lub nierozpuszczalna elektroda grafitowa.

Znacznie częściej stosuje się elektrochemiczną ochronę protektorową, polegającą na połączeniu metalu chronionego, np. żelaza, z blokiem metalu mniej szlachetnego. Jeżeli oba metale znajdują się w tym samym elektrolicie, powstaje krótkozwarte ogniwo, w którym bardziej aktywny magnez lub cynk spełnia rolę anody, a żelazo - katody. Bloki magnezu przytwierdza się w pewnych odstępach do rurociągów podziemnych lub do stalowych kadłubów okrętów, chroniąc je w ten sposób przed korozją. Chociaż zużyte anody magnezowe co pewien czas muszą być wymieniane, jest to prostszy zabieg, niż stałe zasilanie prądem chronionych elementów, jak to ma miejsce przy ochronie katodowej.

Powłoki z metalu mniej szlachetnego od żelaza oprócz izolacji od tlenu i wilgoci zapewniają równocześnie ochronę protektorową. Nawet w przypadku poważnego uszkodzenia powłoki cynkowej naniesionej na znajdującą się pod nią stal, ta ostatnia będzie katodą i jej podatność na korozję będzie w znacznym stopniu ograniczona.

Zupełnie inaczej wygląda sprawa, gdy metalowa powłoka jest bardziej szlachetna niż pokryty nią metal. Ochronne działanie np. powłoki miedziowej, cynkowej czy niklowej naniesionej galwanicznie na żelazo jest tak długo skuteczne, jak długo powłoka jest szczelna. Z chwilą jej uszkodzenia, w obecności wilgoci i zanieczyszczeń proces korozji żelaza jest intensywniejszy niż bez powłoki. Miedź, cyna czy nikiel stają się katoda, a żelazo ulega anodowemu rozpuszczaniu: Fe = Fe2+ + 2e. Stan równowagi reakcji przesuwa się w prawo wskutek zużywania elektronów w reakcji redukcji wodoru w elektrolicie kwaśnym lub redukcji tlenu (O2 + H2O + 4e = 4OH-) w elektrolicie obojętnym lub zasadowym.

Zadaniem powłok niemetalicznych jest izolowanie powierzchni metalu od dostępu tlenu i wilgoci. Używane w tym celu farby i lakiery oprócz ochrony przed korozją służą zarazem do dekoracji powierzchni. Inną metodą uzyskania trwałej, szczelnej i dobrze przylegającej powłoki jest utlenianie (pasywacja) powierzchni metali. Niektóre metale, np. aluminium, samorzutnie pokrywają się na powietrzu zwartą warstwą tlenku, który chroni metal przed dalszą korozją. Utleniając metal anodowo w odpowiednim elektrolicie można uzyskać grubszą i lepiej chroniącą warstwę tlenkową.

Najnowszą metodą ochrony metali jest wytwarzanie tzw. powierzchni stopowych. Proces przypomina w pewnym stopniu elektrolityczne (galwaniczne) powlekanie metali, ale zamiast wody używa się jako rozpuszczalnika fluorków metali alkalicznych i metali ziem alkalicznych z dodatkiem ok. 1% fluorku metalu tworzącego powierzchnię stopową. Istotą procesu jest dyfuzja atomów metalu stanowiącego anodę w głąb powierzchni drugiego metalu będącego katodą. W stopionej soli fluorkowej o temp. 800-1600 K powstaje stop powierzchniowy o grubości 25 do kilkuset mikrometrów. Dotychczas uzyskano ponad 500 różnych powierzchni stopowych. Można dla przykładu przytoczyć odporne na korozje dyfuzyjne powłoki berylowe na miedzi, tytanie, niklu, kobalcie, żelazie, i innych metalach. Powłoki tytanu na miękkich stalach oraz stopach niklowych i miedziowych zwiększają odporność na działanie kwasów. Równie korzystne okazało się aluminiowanie w stopionych fluorkach. Metoda wytwarzania powierzchni stopowych nie ogranicza się do samych metali. Uzyskano np. twarde i błyszczące powierzchnie krzemowe na platynie.

Innym sposobem hamowania procesu korozji jest wykorzystanie tzw. inhibitorów, czyli substancji silnie adsorbujących się na powierzchni metalu i blokujących w ten sposób dostęp jonów wodorowych. Właściwości inhibitujące wykazują substancje powierzchniowo aktywne, wielkocząsteczkowe, związki tworzące nierozpuszczalne osady z jonami metalu a także inne związki zawierające azot i siarkę. Na przykład dodatek 0,05% siarczku dwufenyloetanu zmniejsza o 75% ubytek żelaza w kwasie solnym. Zamiast stosowanego dawniej natłuszczania obecnie konserwuje się i transportuje cenne i precyzyjne urządzenia metalowe w szczelnych opakowaniach z folii polietylenowej zawierających wewnątrz minimalną ilość łatwo lotnych inhibitorów. Również dodatek inhibitorów do farb i lakierów wybitnie polepsza ich właściwości antykorozyjne.









 

...
Zgłoś jeśli naruszono regulamin