Digraphs - Theory - Algorithms and Applications.pdf

(3605 KB) Pobierz
678852757 UNPDF
J¿rgenBang-Jensen,GregoryGutin
Digraphs
Theory,Algorithmsand
Applications
15thAugust2007
Springer-Verlag
BerlinHeidelbergNewYork
LondonParisTokyo
HongKongBarcelona
Budapest
Wededicatethisbooktoourparents,especiallytoourfathers,B¿rge
Bang-JensenandthelateMikhailGutin,who,throughtheirverybroad
knowledge,stimulatedourinterestinscienceenormously.
Preface
Graphtheoryisaverypopularareaofdiscretemathematicswithnotonly
numeroustheoreticaldevelopments,butalsocountlessapplicationstoprac-
ticalproblems.Asaresearcharea,graphtheoryisstillrelativelyyoung,but
itismaturingrapidlywithmanydeepresultshavingbeendiscoveredover
thelastcoupleofdecades.
Thetheoryofgraphscanberoughlypartitionedintotwobranches:the
areasofundirectedgraphsanddirectedgraphs(digraphs).Eventhoughboth
areashavenumerousimportantapplications,forvariousreasons,undirected
graphshavebeenstudiedmuchmoreextensivelythandirectedgraphs.One
ofthereasonsisthatundirectedgraphsforminasenseaspecialclassof
directedgraphs(symmetricdigraphs)andhenceproblemsthatcanbefor-
mulatedforbothdirectedandundirectedgraphsareofteneasierforthe
latter.Anotherreasonisthat,unlikeforthecaseofundirectedgraphs,for
whichthereareseveralimportantbookscoveringbothclassicalandrecent
results,nopreviousbookcoversmorethanasmallfractionoftheresults
obtainedondigraphswithinthelast25years.Typically,digraphsareconsid-
eredonlyinonechapterorbyafewelementaryresultsscatteredthroughout
thebook.
Despiteallthis,thetheoryofdirectedgraphshasdevelopedenormously
withinthelastthreedecades.Thereisanextensiveliteratureondigraphs
(morethan3000papers).Manyofthesepaperscontain,notonlyinteresting
theoreticalresults,butalsoimportantalgorithmsaswellasapplications.
Thisclearlyindicatesarealnecessityforabook,coveringnotonlythebasics
ondigraphs,butalsodeeper,theoreticalaswellasalgorithmic,resultsand
applications.
Thepresentbookisanattemptto¯llthishugegapintheliterature
andmaybeconsideredasahandbookonthesubject.Itstartsatalevel
thatcanbeunderstoodbyreaderswithonlyabasicknowledgeinuniversity
mathematicsandgoesallthewayuptothelatestresearchresultsinseveral
areas(includingconnectivity,orientationsofgraphs,submodular°ows,paths
andcyclesindigraphs,generalizationsoftournamentsandgeneralizations
ofdigraphs).Thebookcontainsmorethan700exercisesandanumberof
applicationsaswellassectionsonhighlyapplicablesubjects.Duetothefact
thatwewishtoaddressdi®erentgroupsofreaders(advancedundergraduate
678852757.001.png 678852757.002.png
viii Preface
andgraduatestudents,researchersindiscretemathematicsandresearchers
invariousareasincludingcomputerscience,operationsresearch,arti¯cial
intelligence,socialsciencesandengineering)notalltopicswillbeequally
interestingtoallpotentialreaders.However,westronglybelievethatall
readerswill¯ndanumberoftopicsofspecialinteresttothem.
Eventhoughthisbookshouldnotbeseenasanencyclopediaondirected
graphs,weincludedasmanyinterestingresultsaspossible.Thebookcon-
tainsaconsiderablenumberofproofs,illustratingvariousapproachesand
techniquesusedindigraphtheoryandalgorithms.
Oneofthemainfeaturesofthisbookisthestrongemphasisonalgorithms.
Thisissomethingwhichisregrettablyomittedinsomebooksongraphs.
Algorithmson(directed)graphsoftenplayanimportantroleinproblems
arisinginseveralareas,includingcomputerscienceandoperationsresearch.
Secondly,manyproblemson(directed)graphsareinherentlyalgorithmic.
Hence,wheneverpossiblewegiveconstructiveproofsoftheresultsinthe
book.>Fromtheseproofsonecanveryoftenextractane±cientalgorithm
fortheproblemstudied.Eventhoughwedescribemanyalgorithms,partly
duetospacelimitations,wedonotsupplyallthedetailsnecessaryinorder
toimplementthesealgorithms.Thelater(oftenhighlynon-trivialstep)isa
scienceinitselfandwereferthereadertobooksondatastructures.
Anotherimportantfeatureisthevastnumberofexerciseswhichnotonly
helpthereadertotrainhisorherunderstandingofthematerial,butalso
complementstheresultsintroducedinthetextbycoveringevenmoremate-
rial.Attemptingtheseexercises(mostofwhichappearinabookforthe¯rst
time)willhelpthereadertomasterthesubjectanditsmaintechniques.
Throughitsbroadcoverageandtheexercises,stretchingfromeasyto
quitedi±cult,thebookwillbeusefulforcoursesonsubjectssuchas(di)graph
theory,combinatorialoptimizationandgraphalgorithms.Furthermore,it
canbeusedformorefocusedcoursesontopicssuchas°ows,cyclesand
connectivity.Thebookcontainsalargenumberofillustrations.Thiswill
helpthereadertounderstandotherwisedi±cultconceptsandproofs.
Tofacilitatetheuseofthisbookasareferencebookandasagraduate
textbook,wehaveaddedcomprehensivesymbolandsubjectindexes.Itisour
hopethatthedetailedsubjectindexwillhelpmanyreadersto¯ndwhatthey
arelookingforwithouthavingtoreadthroughwholechapters.Inparticular,
thereareentriesforopenproblemsandconjectures.Everyclassofdigraphs
whichisstudiedinthebookhasitsownentrycontainingthemajorityofpages
onwhichthisclassistreated.Assub-entriestotheentry`prooftechniques'
wehaveindexeddi®erentprooftechniquesandsomerepresentativepages
wherethetechniqueisillustrated.
Duetoourexperience,wethinkthatthebookwillbeausefulteaching
andreferenceresourceforseveraldecadestocome.
Preface ix
Highlights
Inthisbookwecoverthemajorityoftheimportanttopicsondigraphsrang-
ingfromquiteelementarytoveryadvancedones.Belowwegiveabriefoutline
ofsomeofthemainhighlightsofthisbook.Readerswhoarelookingformore
detailedinformationareadvisedtoconsultthelistofcontentsorthesubject
indexattheendofthebook.
Chapter1containsmostoftheterminologyandnotationusedinthis
bookaswellseveralbasicresults.Thesearenotonlyusedfrequentlyinother
chapters,butalsoserveasillustrationsofdigraphconcepts.Furthermore,
severalapplicationsofdirectedgraphsarebasedontheseelementaryresults.
Onesuchapplicationisprovidedinthelastsectionofthechapter.Basic
conceptsonalgorithmsandcomplexitycanalsobefoundinthechapter.
Duetothecomprehensivesubjectandnotationindices,itisbynomeans
necessarytoreadthewholechapterbeforemovingontootherchapters.
Chapters2and3coverdistancesand°owsinnetworks.Althoughthe
basicconceptsofthesetwotopicsareelementary,boththeoreticalandal-
gorithmicaspectsofdistancesindigraphsaswellas°owsinnetworksare
ofgreatimportance,duetotheirhighapplicabilitytootherproblemsondi-
graphsandlargenumberofpracticalapplications,inparticular,asapowerful
modelingtool.
Westartwiththeshortestpathproblemandacollectionofclassicalalgo-
rithmsfordistancesinweightedandunweighteddigraphs.Themainpartof
Chapter2isdevotedtominimizationandmaximizationofdistanceparame-
tersindigraphs.Weconcludethechapterbythefollowingapplications:the
one-waystreetproblem,thegossipproblemandexponentialneighbourhood
localsearch,anewapproachto¯ndnearoptimalsolutionstocombinatorial
optimizationproblems.
InChapter3wecoverbasic,aswellassomemoreadvancedtopicson
°owsinnetworks.Theseincludeseveralalgorithmsforthemaximum°ow
problem,feasible°owsandcirculations,minimumcost°owsinnetworksand
applicationsof°ows.Wealsoillustratetheprimal-dualalgorithmapproach
forlinearprogrammingbyapplyingittothetransportationproblem.Al-
thoughthereareseveralcomprehensivebookson°ows,webelievethatour
fairlyshortandyetquitedetailedaccountofthetopicwillgivethemajor-
ityofreaderssu±cientknowledgeofthearea.Thereaderwhomastersthe
techniquesdescribedinthischapterwillbewellequippedforsolvingmany
problemsarisinginpractice.
Chapter4isdevotedtodescribingseveralimportantclassesofdirected
graphs,suchaslinedigraphs,thedeBruijnandKautzdigraphs,series-
paralleldigraphs,generalizationsoftournamentsandplanardigraphs.We
concentrateoncharacterization,recognitionanddecompositionofthese
classes.Manypropertiesoftheseclassesarestudiedinmoredetailinthe
restofthebook.
Zgłoś jeśli naruszono regulamin